Overview of CAS HEP Activities at GRC

G. E. Welch
GRC Center Liaison
Convergent Aeronautics Solutions (CAS) Project

Mar 2016
Contents
CAS HEP activities

• High-Voltage HEP (HVHEP)

• Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS)
High Voltage HEP activity

• PI: Ray Beach (GRC)
• Co-PI: Linda Taylor (GRC)

• Objectives
 – Demonstrate controllable, variable frequency AC system to reduce weight and enable distributed electric propulsion
 – Demonstrate materials to enable safe, high-voltage EP

• Idea/concepts
 – Variable frequency, AC power system
 – Doubly fed electric generators and propulsors (DFIM)
 – Settingless protection system
 – Zero energy fault isolation
 – Self-healing insulation
Hybrid Electric Propulsion Architecture Example

Base Architecture

NASA AATT / RR LibertyWorks (RTAPS)

System weight is dominated by the converters and SSCBs.

PI: Ray Beach (GRC); co-PI: Linda Taylor (GRC)
Convergent Technologies

High voltage
Self healing insulation

Gore flat cable

LeRC testbed
SSF 20kHz Power System

Advanced Exploration Systems (AES)
Digital control smart switchgear

High Voltage / Variable Frequency Propulsion System

Wind turbine
Doubly fed machine

787 Variable frequency power system

Ion engine PPU
Zero energy fault clearance
High-Voltage AC Benefits

- Adoption of AC leads to
 - Utilization of zero voltage crossing
 - Energy delivery every half cycle
 - Minimal fault energy
 - Ease of voltage transformation
 - Electromagnetic torque coupling between generator & motors
 - Accommodate GR between turbine & propulsor
 - Doubly fed electric machine significantly reduces power electronic processing (& associated thermal management / weight)
NASA Team Members

• ARC – Control development
• LaRC – Self-healing insulation materials development
• GRC –
 o High voltage cable system development
 o Low power and high power testbed design/build, and test
 o Software in the loop simulation
 o Smart protection system development and test

Partners

PCKrause and Associates – Modeling and simulation of DFIM control

AFRL (WPAFB) – INVENT Program models

CMU – DFIM and power system control

UT-CEM – High speed brushless DFIM concept design
M-SHELLS
Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS)

- PI: Pay Loyselle (GRC)
- Co-PIs: Eric Olson (LaRC), Diana Santiago (GRC)

- Objective – enable hybrid electric propulsion for commercial aircraft by melding load-carrying structure with energy storage to save weight

- Idea/concepts – multifunctional material
 - Hybridize (integrate) supercapacitor & battery chemistries to achieve optimal power and energy densities
 - Utilize strong carbon materials and nanotechnology enhancements to provide integral load-carrying capability.
Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS)

Innovative Lightweight Structural Designs

Combining Advanced Hybrid Battery/Supercapacitors into Structural Elements

PI: Pat Loyselle (GRC); co-PIs Eric Olson (LaRC) & Diana Santiago (GRC)
Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS)

• Intent

<table>
<thead>
<tr>
<th>Properties</th>
<th>Supercapacitor</th>
<th>Battery</th>
<th>Structural Hybrid Supercapacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Power Density</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Long Cyclic Life</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Rapid Recharge</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>No Ionic Swelling</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>No Runaway Thermal</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>High Energy Density</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Load Bearing</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

• Approach – hybrid battery/supercaps & lightweight structural integration
 o Advanced nanostructures & materials
 ✓ High surface area & electrochemical reactivity
 ✓ High strength components & integration of constituents
 o High-performance polymer & ceramic electrolytes & separators
 ✓ High ionic conductivity and structural strength
 ✓ Enables strength & stiffness / transfers stress to electrodes
Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS)

Advanced Hybrid Battery/Supercaps (GRC/ARC)

Innovative Lightweight Structural Integration (LaRC/GRC)

Multifunctional Structural Energy Storage

System Analysis and Trade Studies (LaRC/GRC)