Pioneering concepts for Personal Air Transport Systems

PPlane Project
AMPERE Project
Hybrid electrical propulsion study
PPlane: a pioneering concept for Personal Air Transport Systems

The PPlane Project has been funded by the European Commission
Under the Seventh Framework Program (FP7)
ACP8-GA-2009-233805
Coordinated by Onera
Claude Le Tallec, Scientific and Technical Manager
Where does PPlane fit in the Air Transport System?

Timeline

Vehicle Size

Airliner

Commuter A/C

Business Jet

VLJ

PAV

Todays Common Air Transportation Systems

Future Extension

Long Term
What is PPlane?

- PPlane was a research project funded by the European Commission (2009 - 2013) with the aim of defining a viable Personal Air Transport System of the future (2030 and beyond)
- PPlane has the following characteristics:
 - Fully automated transport enabling a “regular Joe” to use the aircraft without any prior expertise
 - Fly in various weather conditions
 - “Push button” navigation including the integration into the airspace
- Aircraft is part of a “system” enabling the “user” to manage his flight:
 - Set flight destination
 - Monitor the flight from take-off to landing
 - Gets help and information from the ground, when and if needed, including emergencies
- Aircraft operation is Safe and Secure
Potential Concepts of PPlane Vehicles

Air vehicle: “out of the box” but realistic concept
- 6 electric engines buried in the wing, moving up (take-off and landing) or illustrated position for cruise
- Fully automated
- Versions for 2 pax or 4 to 5 pax

Concept of operation
- Only passengers on board - pilot on ground (remote pilot)
- 4D contracts to enable a smooth and safe traffic
- Ramps to take-off and land for environmental (noise), space (compactness) and energy concerns (no on-board energy used for taxiing, taking-off and landing)
PPlane Air Vehicle Cabin/Cockpit Layout

ATC ground side:
- Remote pilots (\(n\) RP for \(m\) aircraft with \(n\ll m\))
- Interface to understand the situation and manage the flights
- High level supervision thanks to the 4D contract principle

Air side:
- Passengers in a comforting environment
- Flight information available
- Interaction with RPs to be defined
PPlane analyses

Human issues

PPlane supervision system (FMS)

Fault detection and identification

Cost
PPlane ground side

PPort concept:
- PPort specifically designed for PPlane aircraft
- Integrated to current airport + other remote locations
- Ramps to take-off and land
- Automatic taxiing provided by a trolley
PPlane system view:

- Is very similar to RPAS architecture
- The addition of a data link network between aircraft improves robustness against loss of links (one air-to-air link and one ground-to-air link in any Pplane)
PPlane is not a substitution to any current transport means, it is one segment of a multimodal transport system.
4D contract concept validation

• Validation / Demonstration of the 4D contract concept for PPlane traffic:
 • PPlanes flights
 • Other traffic flights

Simulations:
⇒ Global traffic management + 4D-Contract planning
⇒ « Gate-to-gate » traffic of the PPlanes + 3D Visualization
PPlane vehicle

Six electric ducted fans engine model for very preliminary qualitative « test fights »
Highly Automated, clean, quiet & safe business transport aircraft

AMPERE project

ONERA
THE FRENCH AEROSPACE LAB
Motivations

The PPlane concept cannot be implemented in the short term:

- Need for a novel 4D contract based ATM system
 - Technically not mature
 - Social acceptance to be gained (pilots & controllers)
- Fully automated aircraft for passenger transport are not mature
 - Technically not mature
 - Social acceptance to be gained (passengers)
 - Experience feedback needed (from UAS operations)

A highly automated aircraft concept could help bridge the gap:

- Light business and GA aircraft safety has to be improved
- Environment has to be preserved
- Automation capabilities are growing exponentially
 - Electrically powered business aircraft (5 pax)
 - Pilot on board with a novel training and licensing process
 - Highly automated aircraft to lower the need for highly proficient pilots
Initial Onera’s Long-term investigation pointed out key-technologies or topics for future AEA:

1. Distributed propulsion
2. Command and control through the association of multi-motors and control surfaces
3. Electric Ducted Fan (EDF)
4. Energy supply, storage and hybrid capabilities
5. Modular architecture and in-flight reconfiguration capabilities of the overall electric propulsion system
6. Improved Multidisciplinary Design and Optimization (MDO) capabilities

Onera started in 2015 a 3 years internal project dedicated mainly to the two first topics, based on numerical and experimental investigations
AMPERE Project – Onera’s Concept-plane using DEP (Distributed Electric Propulsion)

Hyper distributed propulsion using 32 to 40 EDF
→ High lift capabilities, intrinsic redundancy for safety issues

Distributed Electrical Architecture
→ Power sources redundancy (safety)
→ Lower level of current/voltage in ECS, EWIS etc.

Electric Ducted Fan (EDF)

Hyper distributed propulsion using 32 to 40 EDF
→ High lift capabilities, intrinsic redundancy for safety issues

Distributed Electrical Architecture
→ Power sources redundancy (safety)
→ Lower level of current/voltage in ECS, EWIS etc.

Hybrid Composite & metallic primary structure for easy Electric wire routing, EMC issues and thermal management

Hybrid energy sources using 8 to 10 packs of [PEMFC & LiIon battery in parallel]
→ Zero emissions during operations

Hybrid A/C command & Control (control surfaces & EDF)
→ Potential gain (weight and energy saving) on control surfaces, actuators sizing and distribution
AMPERE – Project status and on-going activities

• Overall A/C configuration defined, including local EDF integration by 3D CFD computations
• First investigations on hybrid control/command, with focus on EDF dynamic behavior
• Wind tunnel mock-up (scale 1:5) designed (CAD), using COTS components for propulsion system
• Mock-up manufacturing in progress
• Wind-tunnel experiments expected in last 2016 quarter
Hybrid electrical propulsion study

PTEROSAUR vehicle
Motivations

Research study about:

• Hybrid electrical propulsion and powered lift
• Hybridization battery/ turbo-generator for various types of mission
• High agility aircraft (high/low speed, VTOL/STOL capabilities)

The PTEROSAUR:

• Is an hybrid electrically powered unmanned aircraft
• Has V/STOL capabilities and efficient cruise performance
• Benefits from powered lift:
 • Multiple engines
 • Flaps and ailerons
• Is not a convertible: no mobile wing and/or engines
• Is designed with redundancy requirements and needs in mind to allow operations without restrictions
Current status

Preliminary studies and analyses

1. Parametric analysis to define the energy requirements
 - Take-off and landing, Cruise
 - Low speed & stationary flights
2. Contingency robustness analysis
 - Battery, Engine, Turbo-generator failures
 - Emergency landing
3. Definition of the architecture of the vehicle from 1 and 2
 - Aerodynamic
 - Propulsion

Type A: Energy mainly stored in batteries, turbogenerator used for cruise (low stationary flight capabilities, higher cruise range)
Type B: Lower part of energy stored in batteries, more powerful turbo-generator (higher stationary, capabilities, lower cruise range)