

myCopter: Enabling Technologies for Personal Aerial Transportation Systems

Dr. ir. Joost Venrooij Prof. dr. Heinrich H. Bülthoff

The dream of Personal Aviation

Technology exists to build aircraft for individual transport

many concepts have already been developed

Drawbacks of current designs

- Need for of a pilot license
- Need for infrastructure (e.g., landing strip)

Focus often on vehicle design instead of transport system

2

Transition

PAL-\

Challenges for Personal Aviation

"Designing the air vehicle is only a relative small part of overcoming the challenges... The other challenges remain..." [EC, 2007]

- Accessibility to large audience?
- Vehicle dynamics? Training?
- Automation? Human interaction?
- Safety, noise, ... ?
- Integration?

European Commission, Out of the box – Ideas about the future of air transport, 2007

EU-project myCopter

- Duration: Jan 2011 Dec 2014
- Project cost: €4,287,529
- Project funding: € 3,424,534

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

4

Novel Approaches to Automation

Goal: Develop robust novel algorithms for vision-based control and navigation

Challenges

- Recognize obstacles and other traffic
- Recognize landing areas
- In all season and in adverse weather conditions

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

6

Framework for Vision-Based Navigation

Eidgenössische Technische Hochschule Zürich

3/9/2016

Swiss Federal Institute of Technology Zurich

Collision Avoidance Strategies

50 vehicles at the same altitude fly from a point on a circle to a point on the opposite side

3/9/2016

Demonstration of Swarm Technology

Piloting Personal Aerial Vehicles

Goal: Develop response requirements for PAVs

Challenges

- Flying a helicopter is difficult; requires lots of training
- Determine response type that is flyable by novice "flight-naïve" pilots
- Determine the training requirements for PAV pilots

PAV response types

Develop and assess new response types for VTOL vehicles

Basic helicopter rate control with cyclic

Attitude control (pitch and roll)

Translation control (forward/lateral velocity) Turn coordination, heave augmentation

Car-like steering

Human-Machine Interfaces

Goal: Develop human-machine interfaces that make flying as easy as driving a car

Challenges

- Current flight controls and displays are not intuitive
- Multisensory perception is not taken into account
- No reliable objective measurements of pilot workload

Intuitive Displays and Controls

- Highway-in-the-Sky display
- Haptic aid: active sidestick to "feel" the highway

3/9/2016

Multi-sensory Human-Machine Interfaces

Novel HMI: haptic shared control

- Combining the advantages of manual and automatic control
- The pilot remains in control and can overrule the automatic control system

3/9/2016

Objective Measures for Workload

Human-Machine Interfaces

Exchange helicopter flight controls with a steering wheel and pedals

3/9/2016

HMI Demonstration in DLR Simulator

3/9/2016

Goal: Generate knowledge on the demands and preferences of society towards PAVs

Challenges

- Identifying hurdles for introducing PAVs
- User expectations and objections
- Investigating where PAVs could have an impact

The Socio-Technological Environment

18

Societal Expectations and Preferences

Focus group interviews in 3 European countries to determine user perceptions and expectations

- 1. Discussion on mobility patterns and behaviour as well as perceived promises and actual expectations on PAV / PATS
- 2. Demonstration of a PAV ride in a simulator

3/9/2016

3. Discussion on PAV-specific aspects such as design, operational environment, autonomy, usability, etc.

Ongoing work: CableRobot Simulator

CableRobot Simulator https://youtu.be/cJCsomGwdk0

myCopter: Enabling Technologies for Personal Aerial Transportation Systems

Dr. ir. Joost Venrooij joost.venrooij@tuebingen.mpg.de

Prof. Dr. Heinrich H. Bülthoff heinrich.buelthoff@tuebingen.mpg.de

Dr. ir. Frank M. Nieuwenhuizen

