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1. 1 Future vision

3http://publicdomainreview.org/collections/france-in-the-year-2000-1899-1910/

A 19th-Century Vision of the Year 2000

1. Future Vision and Issues



1. 2 Problems of Small Aircraft
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Regular feeRegular feeRegular feeRegular fee

Discount feeDiscount feeDiscount feeDiscount fee

0.34
2.35

10.53 16.57

Higher CostHigher CostHigher CostHigher Cost Lower SafetyLower SafetyLower SafetyLower Safety

Air taxi & Commuter General  aviation

Air carrier
Air Line

Unit ticket fees for domestic flights (in 
JAPAN, 2014) 

Number of fatal accidents per 1 million flight 
time (average during 1982-1999 in USA) 

The fatal accident rate of small aircraft is 
about 10X higher 10X higher 10X higher 10X higher than that of large aircraft

Source: NTSB Aviation Accident Database

1. Future Vision and Issues



1.3 Major issues and solution
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Popularization of 
General Aviation
Popularization of 
General Aviation

Reduction of operating costReduction of operating cost

Reduction of fatal accidentsReduction of fatal accidents

Electric Electric Electric Electric 
aircraft aircraft aircraft aircraft 

technologiestechnologiestechnologiestechnologies
SolutionSolutionSolutionSolution

Potential strength of Japanese industriesPotential strength of Japanese industriesPotential strength of Japanese industriesPotential strength of Japanese industries
(electric motor, battery, power device,...)(electric motor, battery, power device,...)(electric motor, battery, power device,...)(electric motor, battery, power device,...)

JAXA JAXA JAXA JAXA Current：3～5X higher than airliner

PAV, AirTaxi, ODM
Goal

Issues

utilizationutilizationutilizationutilization
Current：10X higher than airliner

1. Future Vision and Issues
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2.1 Outline of FEATHER project2.1 Outline of FEATHER project2.1 Outline of FEATHER project2.1 Outline of FEATHER project
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Mission
�Development of JAXA’s  unique electric propulsion systems

2. FEATHER Project

FY2012
Design

FY2013
Fabrication

FY2014 
Integration and flight test

1. Multiplexed motor 2. Regenerative air brake 



Reduction gear

①①①①Multiplexed motorMultiplexed motorMultiplexed motorMultiplexed motor ②②②②Pilot interfacePilot interfacePilot interfacePilot interface ③③③③LiLiLiLi----ion batteryion batteryion batteryion battery

Display

Power lever

Electric motor Under wing container

Battery pack

2.2 Overview of the demonstrator2.2 Overview of the demonstrator2.2 Overview of the demonstrator2.2 Overview of the demonstrator

Original aircraft: Diamond aircraft type HK36TTC-ECO

Monitoring unit
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Electric motor
InverterReduction 

gear Radiator

Electric propulsion system

2.3 Electric propulsion system
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SpecificationsSpecificationsSpecificationsSpecifications
Wing span 16.33m
Take-off weight at the flight test 800kg
Crew member 1 person
Types of electric motor and inverter Permanent magnet type synchronous motor 

(three-phase) and IGBT inverter
Motor control method FOC (Field-oriented control)
Maximum total shaft power (at RPM) 60kW (2.5min. at 6586RPM), 63kW(proven at 

flight)
Type of power source Lithium-ion battery (32 cells in series)
System voltage (open circuit at 100%SOC) 
and Current

128V, 750A

2.4 Specifications
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2.5 Multiplexed electric motor system

inverters

232mm2
2
0
m
m

3.75㎏ 1

2

3

4 CharacteristicsCharacteristicsCharacteristicsCharacteristics
� Compact
� Light weight(2.17kW/kg)
� High efficiency(95%)
� High strength of structure
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2.6 Regenerative air brake system(1/4)
Characteristic
features

1. Augmentation of descent rate by only pulling the power lever w/o 
conventional air brake
2. No weight penalty based on the field-oriented control method
3. Maximization of the regenerative electricity for variable air speeds
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Motor Generator

Inverter
Rectifier

Capacitor

DC/DCBattery

Field-oriented control 

Motor / Generator

Inverter

Battery

Conventional
Power lever

2. FEATHER Project
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Power lever 

displacement

Torque command value

PWRRGN

2.6 Regenerative air brake system(2/4)
Motor torque is used as a command value 
in field-oriented control methodT

δPL

T = CRGNδPL

(-100%≤δPL≤0%)

T = CPWRδPL

(0%≤δPL≤100%)

ConstantVariable

2. FEATHER Project
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Rotational 

speed

Torque

0

2.6 Regenerative air brake system(3/4)

（PWR）

（RGN）

Torque command value

（corresponding to power lever max）

Maximization of the 
regenerative electricity

� Pitch angle of a blade = constant

2. FEATHER Project

The torque command value has to 
intersect with counter torque curve 
of propeller, otherwise the rotational 
number becomes zero or negative.

Counter torque of 

Prop.

Free rotation(NTL)



2.6 Regenerative air brake system(4/4)

Specially designed power 
lever to facilitate the control of 
descent rate and regeneration

Block diagram of the regenerative air brake system

Vair is not necessary as the feedback parameter  to 
maximize the regenerative power in this system.

Motor/ 
Generator Inverter

System 
control unit

Battery

Target Torque Target Torque Target Torque Target Torque NNNNpppp Power 
lever

Propeller
Display

displacement

Pitot tube
Vair Regenerative power
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2.7 Flight demonstration
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An example of flight test data 17
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Airbrake

2.7 Flight demonstration

Descent by using the 
conventional airbrake

Descent by using the 
“regenerative airbrake system”
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3. Toward 3. Toward 3. Toward 3. Toward future electric aircraftfuture electric aircraftfuture electric aircraftfuture electric aircraft
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Drag reduction (L/D>25)

Simple conversion of petrol to battery(4PAX, L/D<10)

High AR wingHigh AR wingHigh AR wingHigh AR wing

High energy density Li-ion battery

http://www.hitachi.com/New/cnews/month/2014/11/141114.html

Fuel cell & H2Range Extension

Hitachi demonstrated 

335Wh/kg and 30Ah on 

Nov. 2014 and they have 

developed by 2020 .

®Skyhawk172

®Taurus G4

TOYOTA ‘s ®MIRAI with 

2.0kW/kg FC stack. 



3. Toward 3. Toward 3. Toward 3. Toward future electric aircraftfuture electric aircraftfuture electric aircraftfuture electric aircraft
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Automatization 1. Electric propulsion system have a high affinity for automatization.

2. Electric motor have a high response performance.

3. Electric motor can be flexibly arranged on a wing or a fuselage. 

Power by wire Key technology

ComputerComputerComputerComputerInverterInverterInverterInverter

MotorMotorMotorMotor SensorsSensorsSensorsSensors

Sensing ActuatorSensing ActuatorSensing ActuatorSensing Actuator Control AlgorithmControl AlgorithmControl AlgorithmControl Algorithm Alternative  S&CAlternative  S&CAlternative  S&CAlternative  S&C

Collaborative work
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Thank youThank youThank youThank you

http://www.aero.jaxa.jp/eng/research/frontier/feather/

http://hflab.k.u-tokyo.ac.jp/index.html
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1. Backgrounds & Objectives
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Electric and hybrid 

propulsion system for 

aircraft

1. FEATHER project

2. Concept study of fuel 

cell–gas turbine hybrid 

aircraft

LongLongLongLong----term term term term research toward research toward research toward research toward 
zerozerozerozero----emission aircraft emission aircraft emission aircraft emission aircraft 

collaborative work

Aeronautical Technology Directorate
In JAXA 



Target and mission of FEATHERTarget and mission of FEATHERTarget and mission of FEATHERTarget and mission of FEATHER

http://www.aero.jaxa.jp/publication/pamphlets/pdf/apg2012‐kouen03.pdf
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Small airplane for 

FEATHER 

Mission of FEATHER project
�To get flight permission from JCAB as the 
first case of electric manned flight in Japan 
�Development of JAXA’s  unique electric 
propulsion system
�Flight validation of the new functions and 
system performance 

1. Backgrounds & Objectives



Mile stones
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2012-2013 2014                              2015
June March July November            February

StartStartStartStart IntegrationIntegrationIntegrationIntegration Approval for Approval for Approval for Approval for 
flight testflight testflight testflight test

Maiden flightMaiden flightMaiden flightMaiden flight

Complete of electric Complete of electric Complete of electric Complete of electric 
propulsion systempropulsion systempropulsion systempropulsion system

FY2012
Design

FY2013
Fabrication

FY2014 Integration and flight test

Final flightFinal flightFinal flightFinal flight

600ｍ Runway

～
10m

～0.5min.

Jump test

2700ｍ Runway

120～150km/h

～600m

～20min.

Short traffic pattern flight testJump test
2000ｍ Runway

～
80m

～5min.

Approval for Approval for Approval for Approval for 
flight testflight testflight testflight test
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A) Electric motor-glider system 

A1-1）Driving system

Multiplexed motor
Inverter

Radiator & Pump
Reduction gear

Propeller

A2) Measurement system

A3) Airframe  system

A4) Charging system

Li-ion battery

A1-2）Power source 

A1-3）Pilot interface

A1-4）Management system

Display
Power lever

System control unit

A1) Electric propulsion system

2. Systems

System configuration

Electric motor-glider system
(Flight demonstrator)

27



3. Concepts
1. Multiplexed motor 2. Regenerative air brake 
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3.1 Multiplexed electric motor system(1/3)
Our 
motivations

1. Avoidance of “loss of engine power” for single piston engine aircraft.
2. Redundancy of electric motors.

Other 
researches

1. Distributed motors and fans for VTOL (Alex  M. Stoll et al. 
of Joby Aviation, 14th AIAA Aviation Technology, Integration and 
Operations Conference 2014, AIAA2014-2407)

2. Electric Propulsion for Vertical Flight (Michael Ricci of 
LaunchPoint Technologies; AHS Transformative Vertical Flight 
Workshop 2014, Arlington, VA )

Our selection 
of approach

Putting multiplexed motor on a propeller shaft

3. Concepts

29



Technical 
issues for 
us

1. Reduction of the size and weight

2. Optimization of the number of motors

3. Isolation of failures
Our 
solutions

1. Directly coupling with each motor (additional
joint parts are unnecessary)

2. Quadruplex motor based on the trade-off 
analysis

3. Individual contactors
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3.1 Multiplexed electric motor system(2/3)
3. Concepts
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3.2 Regenerative air brake system(1/5)
Our 
motivations

1. Elimination of conventional systems by multifunctionality of electric motor.
2. Regeneration of electricity by electric motor.

Other 
researches

1. Feasibility study of regenerative soaring (J.Philip Barnes, Perican Aero Group, 
SAE Tech. Paper 2006-01-2422, 2006)
2. WATTsUP can recuperate 13% of energy on every approach and 
reduce the field length of landing(Pipistrel, Aircraft News,31 Mar 2015)

Our selection 
of approach

1. Utilization of aerodynamic drag on the prop. due to regeneration
2. Simultaneously harvesting a certain amount of energy

3. Concepts
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Regenerative air brake system



2.6 Regenerative air brake system(1/4)
Technical 
issues for us

1. Simplify the control of descent rate
2. Avoidance of weight penalty and hardware complexity
3. Maximization of the regenerative electricity

Our solutions 1. Augmentation of descent rate by pulling the power lever
2. The simplest system configuration based on the field-oriented control method
3. Formulation of control algorithm based on the aerodynamic features

32

Motor Generator

Inverter
Rectifier

Capacitor

DC/DCBattery

Field-oriented control 

Motor / Generator

Inverter

Battery

Conventional
Power lever

2. FEATHER Project
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Power lever 

displacement

Torque command value

PWRRGN

3.2 Regenerative air brake system(3/5)
3. Concepts

Motor torque is used as a command value 
in field-oriented control method
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Rotational 

speed

Motor torque Aerodynamic 

feature of Prop.

0

Airspeed = constant

Pitch angle of a blade = constant

3.2 Regenerative air brake system(3/5)3. Concepts

Free rotation(NTL)

（PWR）

（RGN）

Reverse

Rotation

Torque command value（RGN maximum）

Significant

Drag!!

Disadvantage of FOC
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Rotational 

speed

Motor torque Aerodynamic 

feature of Prop.

0

Airspeed = constant

Pitch angle of a blade = constant

3.2 Regenerative air brake system(3/5)3. Concepts

Free rotation(NTL)

（PWR）

（RGN）

Torque command value（RGN maximum）

opportunity loss
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Rotational 

speed

Motor torque Aerodynamic 

feature of Prop.

0

Airspeed = constant

Pitch angle of a blade = constant

3.2 Regenerative air brake system(3/5)3. Concepts

Free rotation(NTL)

（PWR）

（RGN）

Torque command value（RGN maximum）

Maximization of the 
regenerative electricity
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3.2 Regenerative air brake system(4/5)

Wind tunnel tests results for the actual propeller in RGN mode
(The flight demonstration was mainly conducted at angle of propeller pitch, β=14deg)

PWR

RGN

SmallSmallSmallSmall----scaled scaled scaled scaled 
prop. testprop. testprop. testprop. test

Actual prop. testActual prop. testActual prop. testActual prop. test

　52

maxmax 2 ppPP DNC ρπτ =

The maximum torque is 
proportional to Np

2 at a β
value independent of Vair.

,pN

3. Concepts
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2. FEATHER Project 2.7 Flight demonstration



5. Summary
We have succeeded in flight demonstration as follows: 

1. Avoidance Avoidance Avoidance Avoidance of complete of complete of complete of complete power power power power loss loss loss loss in engine failure 
during climb by using the multiplexed electric motor
2. RegenerationRegenerationRegenerationRegeneration of of of of electricity electricity electricity electricity about 8% of maximum motor 
output during descent
3. Control of descent rate by the proposed regenerative regenerative regenerative regenerative 
airbrake systemairbrake systemairbrake systemairbrake system without conventional airbrake
4. Continuous “regenerative soaringregenerative soaringregenerative soaringregenerative soaring” free from descent in 
thermal condition

Acknowledgement: The wind tunnel test in this research was partly supported by the Ministry of 
Education, Culture, Sports, Science, and Technology grant (Basic Research A, number: 26249061). 40
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∆∆∆∆Np ∆∆∆∆VS ∆∆∆∆L

� Torque

� Thrust

� Airspeed


