ODM Technical Roadmap Report Out:

Electric Propulsion Roadmap

Mark Moore

NASA, Langley Research Center Hampton, VA

Transformative Vertical Flight Workshop September 29, 2016 Hartford CT

Electric Propulsion Scope

- Vision/Strategy
- ODM Goal Alignment
- Electric Propulsion Leveraging
- Electric Propulsion Technology Development Outcomes
- Electric Propulsion Study Outcomes
- **Electric Propulsion Standards Development**

Electric Propulsion Vision

Technologies with certification path for small commercial passenger aircraft, that achieve a compelling benefit value proposition

- Application to transformative, high-speed regional and urban transportation
- Pursue ODM goals through benefit strategies across
 - Operating cost and emission reduction through decreased energy/maintenance
 - Safety through propulsion system distribution/redundancy/reliability/robustness
 - Noise/Ride Quality through synergistic integration with aero/control/structures
- Focus on providing integrated flight demonstration opportunities across both CTOL and VTOL missions applications

Scale-up strategy has strong linkage to NASA's strong investment in commercial transport technologies

Focus on pushing to higher power levels, more complex hybrid-electric bus

Scale-down strategy has strong linkage to UAV and professional hobbyist markets

Leverage lower cost components produced to push towards COTS availability

ODM Roadmapping Process

Stakeholders Industry, FAA NASA

Outcomes & Vision

Technology
Survey, Candidates

Research Themes

Roadmaps, Technical Challenges

Specific project challenges, Investments

ARMD Strategic Thrusts

ODM Barriers & Figures of Merit

Ease of	Affordability	Safety	Ease of Use	Door to Door
Certification				Trip Speed
	<u>Metric</u>	<u>Metric</u>	<u>Metric</u>	
<u>Metric</u>	Total Operating	Fatal Accidents	Required	<u>Metric</u>
Time/Cost	Cost/Pax Mile	per Vehicle Mile	Operator	mph
Required			Training Time	
			& Cost	

Average Trip Delay

> Metric Time

Community Noise

Metric
Perceived
Annoyance @
standoff

Ride Quality

Metric Passenger Comfort Index Efficiency

Metric Energy/Pax Mile Lifecycle Emissions

Metric
Total Emissions
/Pax Mile

Product of Kansas City Workshop, Oct. 2015

ODM Barriers & Figures of Merit

Electric Propulsion Contributions

Ease of Certification

Metric Time/Cost Required **Affordability**

Metric
Total Operating
Cost/Pax Mile

Safety

Metric Fatal Accidents per Vehicle Mile Ease of Use

Metric
Required
Operator
Training Time
& Cost

Door to Door Trip Speed

> Metric mph

Average Trip
Delay

Metric Time Community Noise

Metric
Perceived
Annoyance @
standoff

Ride Quality

Metric Passenger Comfort Index Efficiency < + >

Metric Energy/Pax Mile Lifecycle Emissions

Metric
Total Emissions
/Pax Mile

Secondary

Electric Propulsion Leveraging

Flight Demonstrators: ODM-scale integrated test beds (FDC investments)

Current RFI for VTOL and CTOL hybrid-electric approaches

STTR/SBIR: Distributed Electric Propulsion STTR, and Electric VTOL SBIR

Energy Storage: ODM-scale increase energy density (CAS investments)

Solid Oxide Fuel Cell (SOFC) FUELEAP ~100 kW complete flight system

Scale-up: Regional commercial transports (Leverage AATT and TTT investments)

- High voltage power systems, hybrid-electric power bus architectures
- High aspect ratio wing structures and DEP aeroelastic behavior
- DEP and low tip speed acoustics

Scale-down: UAVs (Leverage CAS and SBIR investments)

Series hybrid range extenders: 1.5 kW Launchpoint, 28 kW GSE reciprocating,
 40 kW Metis micro-turbine

External Leveraging:

- Batteries: High specific energy batteries capable of 3C discharge/high cycles
- Chargers: Higher voltage/power, pulse chargers capable of rapid charging

Electric Propulsion Technologies

ODM Electric and Hybrid-Electric Power System Development

- Turbine-alternator-recuperator series hybrid system (likely desired size of ~300 kW to meet both Urban VTOL and Thin-Haul CTOL needs, also relevant to commercial APU scale-up)
- Advanced electric motor/controller, methods to limit need for gearboxes and liquid cooling complexity, achieve integrated thermal management, tighter motor-controller integration, with ODM-scale hardware demonstrations (at ground and flight TRLs)

ODM Electric Aircraft Optimized Energy Storage

- Battery cell to pack mass fraction improvement while achieving cell spacing and cell failure
 propagation containment, lightweight battery management/monitoring systems, as well as crash
 containment able to meet FAA certification requirements
- Advanced battery cell chemistry and packaging optimization to meet aviation mission loads, discharge profiles, recharging turn-around needs, and reserve requirement/high cycle life

ODM Optimal Electric Power Architectures

 High voltage (400-800 volt) power architectures that investigate combinations of battery types, superconductors, fuel cell, hybrid-engines, etc. to achieve high stability/robustness, including the ability to achieve low EMI interference with instrumentation/control communications

Electric Propulsion Studies

Investigation of Distributed Electric Propulsion Integration Strategies

- Aerodynamic Investigations: Highlift system, Wingtip vortex, Fuselage boundary layer coupling,
 Split-wing embedded integration, ...
- Control Investigations: Enhanced control through digital-fly-by-wire integration of propulsion into inner-loop control augmentation.
- Structural Investigations: Multi-functional and distributed energy storage application to configurations.
- Acoustic Investigations: Integration approaches that utilize variable propeller speed, airframe shielding, blade harmonic frequency tuning, etc.

Energy and Maintenance Cost Reduction Quantification

- Energy: Urban VTOL/Thin-Haul CTOL working group focused fleet studies
- Maintenance: Electronic power system component reliability studies...

Life Cycle Emissions Reduction Quantification

 Wings to well analysis studies that can provide common emissions basis across ODM missions and electric/hybrid-electric architecture approaches

Electric Propulsion Standards

- Modified Electric Energy Reserves: Activities already initiated in GAMA/EPIC potentially needing supporting simulation/mission studies that can provide analytical basis for reduced reserves specifically for shorter range trips with high density of alternate emergency landing locations.
- Multi-Engine Control for Electric Aircraft: Provide basis for control of multielectric motor propulsion solution through integrated motor controller and the associated required pilot training. (i.e. address E-fan certification dilemma and initiate DEP master controller implementation pathways)
- Electric Energy Storage State of Charge Management: Establish standard for determination of distance/time/power level available across operating conditions (temperature, battery life, etc). Including human interface issues that assist with decision making across electric and hybrid-electric power systems.
- Electric Motor/Controller Testing: Part 33 equivalence while accounting for flight criticality integration determination of redundant propulsion and energy storage
 - Is a small series hybrid engine a flight critical component if a battery provides sufficient energy to meet reserves.
 - Are partial failure modes addressed, i.e. dual windings on a single motor with multiple controllers.

10

Electric Propulsion Roadmap Timeline

2016	2021 2026			
Proof c		Operations, Maturation, Redesign, ension, and Technology Scaling		
	Thin-Haul X-Plane VTOL X-57 Thin-Haul Hybrid System Flight Demonstrator Thin-Haul Hybrid System Flight Demonstrator Flight Demonstrator Scale-Down Tech Integration Initial Operationa Vehicles	Scale-Up Tech Integration		
Leveraging	SBIR/STTRs High Aspect Ratio DEP Aeroelastic Wing High Voltage Systems			
Lev	SOFC System Integrated Motor-Controller DOE 500			
	DEP and Low Tipspeed Acoustics Small Scale Range Extenders Batteries Chargers Chargers			
Studies	Distributed Electric Propulsion Integration for ODM Missions Boundary Layer Ingestion Propulsion Validation			
Stur	Energy and Maintenance Life Cycle Emissions Cost Quantification Quantification			
ogies				
Technologies	Aircraft Optimized Energy Storage Integrated Thermal Advanced Electric Motors-Controlle Avoiding Gearbox, Liquid Cooling			
Standards	Modified Electric Multi-Engine Energy Reserves Control for (Initiated by GAMA) Electric Aircraft			
	Electric Motor- Electric Energy Storage Controller Testing Management	11		