

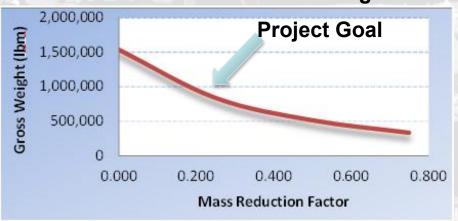
Structural Boron Nitride Nanotube Composite Development

February 21, 2014

Catharine Fay
NASA Langley Research Center
Advanced Materials and Processing Branch

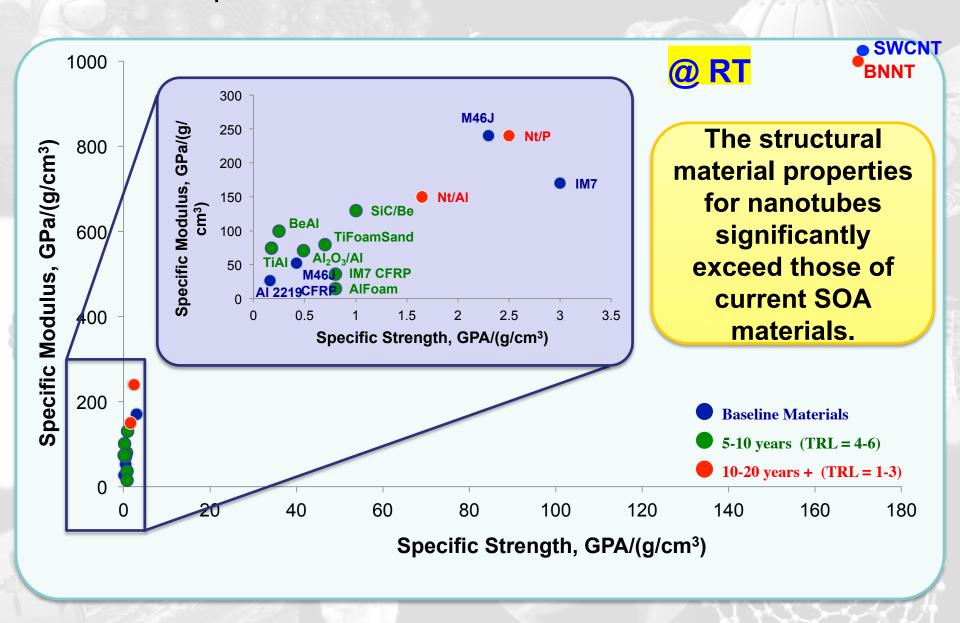
Strategic Partner:

Strategic Overview

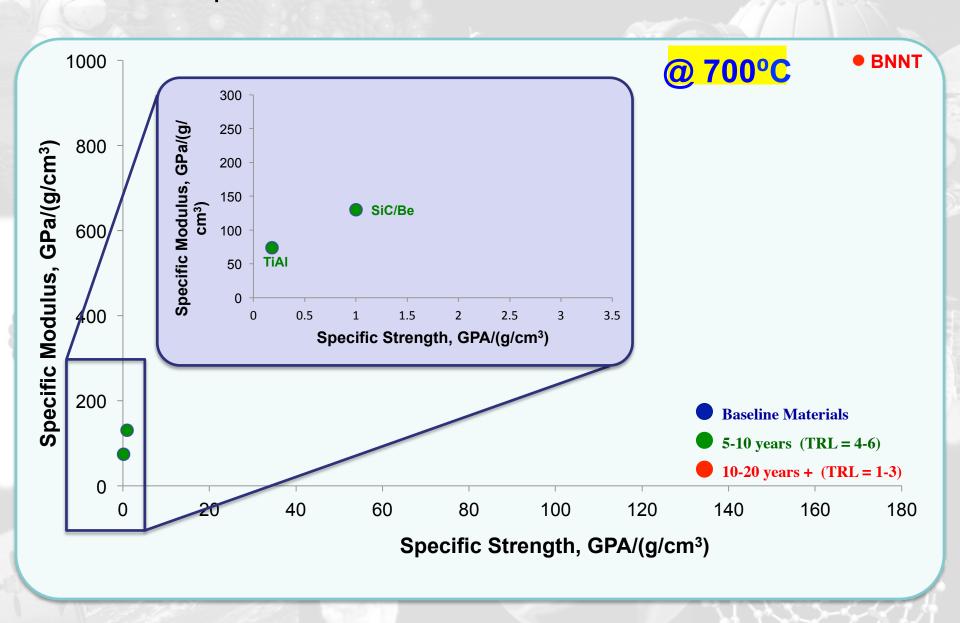


 Vehicle weight is a primary driver for most NASA missions.

Reducing vehicle weight can:


- Expand mission capability
- Reduce launch costs
- Reduce fuel consumption
- Systems analysis shows that reducing materials mass by 20% leads to a 30% reduction in launch vehicle gross weight
- Same study indicates a 50% reduction in materials mass reduces launch vehicle gross weight by >60%, enables potential single stage to orbit designs
- Additional multifunctionality: thermal, radiation protection, sensing capabilities, no corrosion

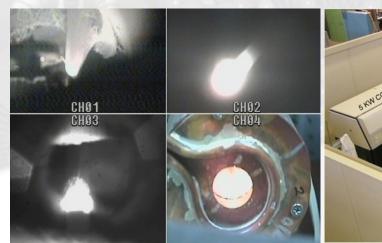
Effect of Materials Mass Reduction on Launch Vehicle Gross Weight



Potential Impact: Produce advanced BNNT composites with higher thermal stability, lightweight, no corrosion, tough, and radiation shielding effectiveness

Properties of Materials for Vehicle Structure

Properties of Materials for Vehicle Structure



Technology Areas TA 6 7, 10 and 12 **Life Support Membranes** Structure: Stronger/ (e.g. water, CO₂) Tougher/Lighter Components **Micrometeoroid Protection Ultralightweight** High Wire Insulation **Temperature** Components **Radiation** Shielding/ **Protection Thermal Protection Systems** Lightweight **Tethers**

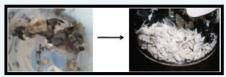
Team **Technical Group Lead** Catharine Fay1 **Synthesis & Production** Radiation Joseph Lee² Sheila Thibeault¹ Godfrey Sauti⁶ Hoa Luong³ **Diagnostics Systems Analysis BNNT Team** Paul Danehy² Kevin Earle⁵ Jennifer Inman² Stephen Jones² **Modeling Characterization & Processing** Cheol Park⁶ Peter Gnoffo⁴ Glen King¹ Derek Liechty⁴ Sharon Lowther¹ Vesselin Yamakov⁶ Sang-Hyon Chu⁶ ¹ Advanced Materials and Processing Branch, LaRC Research Directorate Luke Gibbons⁶ ² Advanced Sensing and Optical Measurements Branch, LaRC Research Directorate Jin Ho Kang⁶ ³ Materials Experiments Branch, LaRC Research Directorate Amanda Tiano⁶ ⁴ Aerothermodynamics Branch, LaRC Research Directorate Samantha Applin⁶ ⁵ Space Mission and Analysis Branch, LaRC Systems Analysis & Concept Directorate Wanda Gresham³ ⁶ National Institute of Aerospace Hyunjung Kim⁶

NASA BNNT Product Strategy Steps

Synthesis

Production

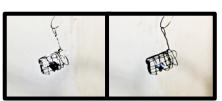
BN Nanotubes


- Two trained operators.
- Runs on average 3 days a week 4 hours per day. (not including startup and shutdown/harvesting)
- To date has produced approximately 9 grams of material.
- Production rate between 15 and 20 mg per hour.
- Enables purification and dispersion studies.
- Enables fabrication of yarns mats and other structural components.
- Enables Material Transfer Agreements to NIA and Universities.

BNNT Purification Progress

Acid Treatment Purification

Using nitric acid, remove boron nanoparticles (an impurity) from sample.



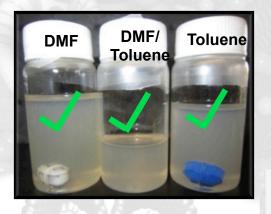
- Boron nanoparticles removed
- Noticeable damage to the nanotubes resulting in poor quality of the acidtreated sample
- Acid-treated structural mats have no integrity

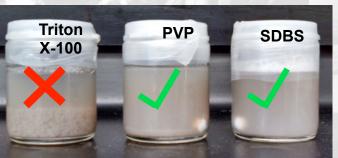
Thermal Purification

Use heat to remove boron nanoparticles and potentially remove boron oxides (i.e. water soluble impurities).

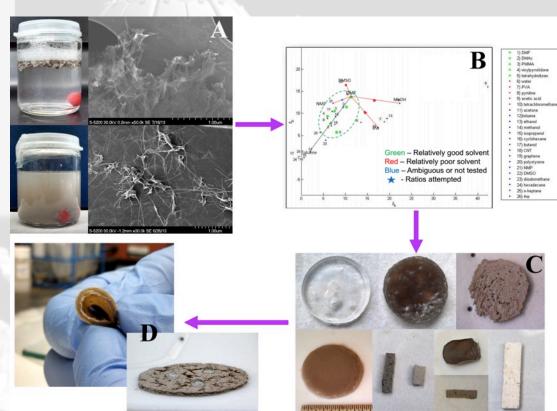
- Boron nanoparticle removal alternative
- Assumption: the darker the BNNT, the higher the boron content/impurity content; visible color change from a darker to a lighter-colored material
- Further analysis and investigation in progress

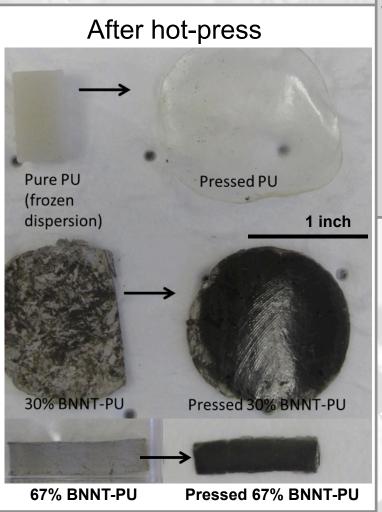
Surfactant Purification

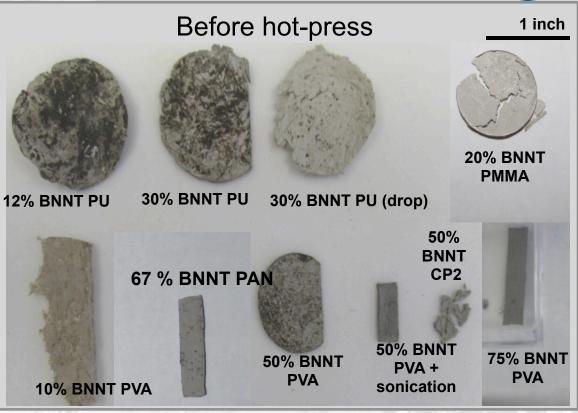

Using surfactants, remove all impurities, which includes boron nanoparticles and amorphous and crystalline BN.


- Least harmful method to purifying the nanotubes
- Potential removal of crystalline BN (which cannot be removed via other listed purification methods)
- Further analysis and investigation in progress; will include sonication and centrifugation as well*

Dispersion studies





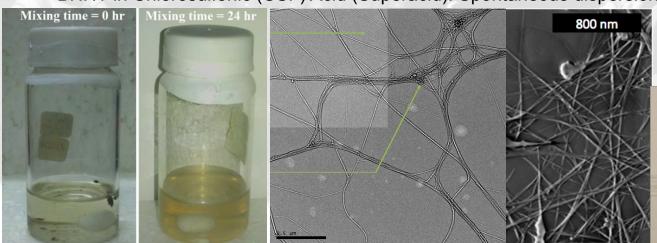


- By surveying a variety of solvents/co-solvents, surfactants, and polymers (A), a solubility region for BNNTs was established (B) using Hansen solubility theory.
- Extending this knowledge, we generated BNNT structural composites (C) with a plethora of interesting properties (D).

Frozen dispersion fabrication method

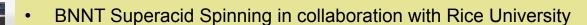
New fabrication method simplifies processing for high weight nanocomposites

This approach can be used to fabricate BNNT + polymers/ epoxies and lock in the dispersion conditions

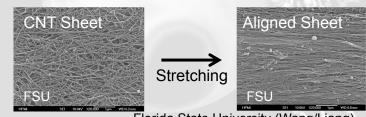

The "frozen dispersion" step is intermediate - the sample is consolidated during hot-pressing

PU - Polyurethane PMMA - Poly(methyl methacrylate) PVA - Polyvinyl alcohol PAN - Polyacrylonitrile CP2 - LaRC CP2 Polyimide

BNNT Purification, Dispersion, & Spinning

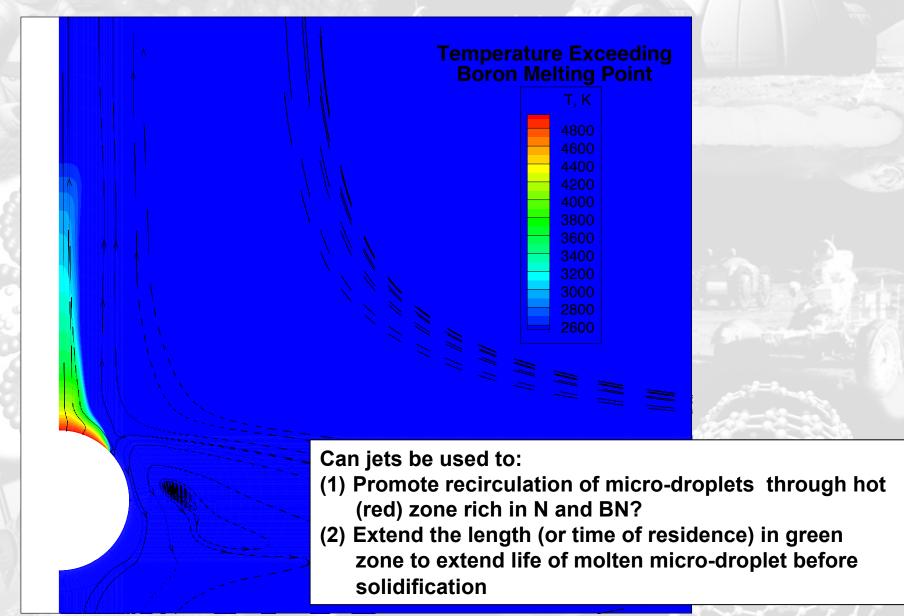


BNNT in Chlorosulfonic (CSF) Acid (Superacid): Spontaneous dispersion and debundling



Need purified BNNT for spinning

Rice University (Prof Matteo Pasquali)


Three Goals for BNNT Modeling

- Define the environment in which tubes now grow.
 - "Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig", JTHT, Vol. 27, No. 3, 2013
 - Simulate domain for irradiated droplet suspended in space to better model convection currents – key to understanding nucleation site environment
- Define the optimum environment for growing BNNTs.
 - Observations suggest significant formation of tubes at nucleation sites rising from heated surface, even before condensation wire is encountered
 - If tip growth mechanism: need to simulate nucleation of supersaturated BN from rising plume on nucleation site(s)
 - If root growth mechanism: need to simulate micro-droplets of liquid Boron ejected from heated surface
 - Melts at ~ 2600 K, Boils at ~ 5000 K at 200 psi
 - Simulate evolution of absorbed N₂, N, and BN in micro-droplet as it rises in plume and cools
 - Plan to explore molecular dynamics approach of Violi et al. (A multi-scale computational approach for nanoparticle growth in combustion environments)
- Explore modifications to rig by simulation to promote optimum environment.
 - Directed jets may be used to speed or slow the plume dynamics, possibly inducing recirculation through the hot zone rich in BN, to promote BNNT growth.

Temperature Contours Around 1 mm Radius Boron Droplet

Optical Diagnostic Techniques for BNNT

 Need a detailed understand of chemistry and flow physics of nanotube generation and how the process changes under different operating conditions

- Improve and validate simulation/modeling
- Optimize material properties, production rate
- Specific Goals:
 - Determine gas and melt-ball temperatures
 - Determine amount of B₂, B, BN, N and N₂
- In-situ, on-surface measurement:
 - optical pyrometry for surface temperature
- Off-surface, gas phase measurement:
 - High-speed, high-resolution imaging
 - · Shadowgraph and visible emission
 - Species sensitive imaging (BN PLIF)
 - Temperature measurements (CARS)

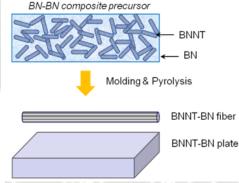
Partnerships & Collaborations

Strategic Partner

- NASA LaRC Center (5 branches)
 - Glenn Research Center
 - Goddard Space Flight Center
 - Johnson Space Center
 - Ames Research Center
- Other Government
 - Air Force Office of Scientific Research
 - NIST
- Commercial
 - BNNT, LLC
 - Momentive

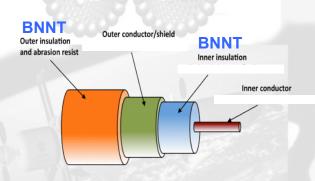
Universities

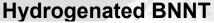
- UC-Berkeley
- Rice University
- SUNY-Binghamton
- VA Commonwealth University
- University of North Texas
- University of New Hampshire
- NC State
- Hampton University

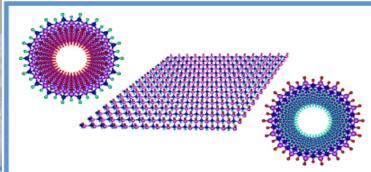

International

- ONERA (France)
- Institutode Nanociencia de Aragon (Universidad de Zaragoza, Spain)

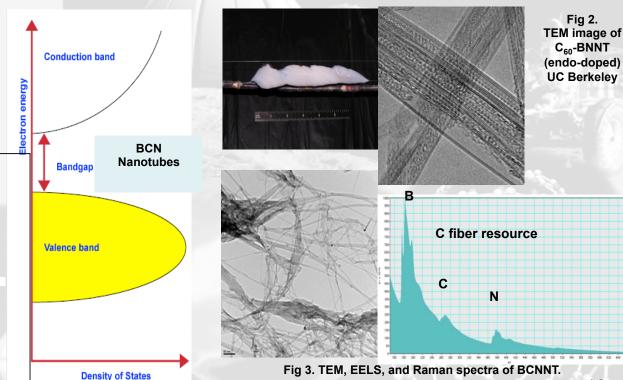
BNNT enables.


Hydrogen Storage BNNT


Multi-Functional All BN-BN Composite



The fabrication processes of BN-BN composite precursor and different BN-BN composite structures (fiber, plate composite).


TYPICAL CNT COAXIAL CABLE CONSTRUCTION

Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study

B_xC_vN_z Nanotube (BCNNT) Development