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Predictive Modeling & Model Discrepancy

+ Reynolds Averaged Navier-Stoke
(RANS) simulations are widely
used in design, optimization, and
reliability assessment of aero and
space vehicles and gas turbines
relevant to NASA missions.

* However, it remains challenging
to predict system performance
with confidence.

“ Model discrepancy is a major
obstacle in predictive
modeling with RANS models.




Origin of Model Discrepancy
in Low Fidelity Models

1.We do not understand the physics well enough to
describe/model them.

2 .We cannot afford the computational cost to
adequately resolve the physics.

+ |In many cases, model discrepancy originates from the
combination of two.

+ The second reason is dominant for RANS based
turbulence modeling, but it also depends on the
Interpretation.

Using data to complement low fidelity models!
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Simulation in Support of Design and Optimization

Calibration Cases
(offline data)

Prediction Cases (no data)

A few configuration with
data (DNS or
measurements)

Similar configuration with
different:

» Twist
» Sweep angles

» Airfoil shape

Machine learning



Scope of This Presentation

Proposition: Machine learning in conjunction with (offline)
data can be used to reduce model discrepancy of low-
fidelity models, which are often used in engineering design.

Here, | share my perspectives and experiences of using
physics-informed machine learning to assist modeling
of complex physical systems.

RANS turbulence modeling, a typical low fidelity CFD
model for turbulent flows, is used as example.

However, the approach is general enough to be
relevant for researchers of many other domains, e.g.,
structures, materials, combustion (flow and chemistry).



Unique Challenges in ML for Computational Physics

Why can’t we take the usual approach and simply use
ML to learn what we want to know? Pressure, drag, lift,
velocity, failure probability etc. May violate physics laws!

There are many “hard constraints” originating from
physics laws, e.g., velocity field is divergence free for
incompressible fluid; pressure and velocity fields must
be consistent (related via PDE); elasticity tensors must
be positive definite, etc.

Popular applications of ML has mostly “soft
constraints’. Sentiment analysis in reviews: great,
pleasant=5; terrible=1|.Targeted advertisement: diapers
go with infant toys. Scientific document analysis:

abstract, introduction, methodology, results, conclusion.



Physics-Informed Machine Learning: Clarification

2 Algorithm development has drawn inspirations from
physics/biological systems, e.g., simulated annealing,
particle swarm, genetic algorithm: Not what | mean.

2 Our interpretation of PIML: using ML to solve physical
problems (mechanics of fluids, solids, materials,
combustion).

[ Incorporate physical constraints (e.g., conservation
laws, realizability) in every aspect of ML:

[A formulation of the learning problem
[A choice/normalization of features and responses
[A choice/development of learning algorithm.

[ ] Co-design in (1) formulation of physical problem for
learning; (2) ML algorithm development; (3) hardware.

11



Physics-Informed Machine Learning: Perspectives

Assist but respect models: Machine learning should be
used to correct/improve existing models, not to replace
them. Thus, we learn the model discrepancy, not the model
output directly. (consensus)

1. Choose quantities that have physical bounds/constraints/
interpretation to learn (allow for anchoring to physics).

2. Learned quantities should be universal to some extent:
same functional form in training and prediction flows! Note
the limitation of universality though...

3. Obey physical constraints in the learning as much as
possible (e.g., hard constraints such as positive semi-

definiteness of Reynolds stress; conservations of mass).
12



Case Study: RANS-Based Turbulence Modeling

Description of the challenge
Problem formulation

Procedure;
y=flq)or f:qg—y

| ——

Choice of features and responses

Choice of machine learning algorithm
Results

Possible extension to other systems

13



RANS as Work-Horse Tool in CFD

RANS (Reynolds Averaged Navier-Stokes) solvers
with turbulence closures are still the low-fidelity
work-horse tool in industrial CFD simulations.

High-fidelity methods such as LES and DNS are still
too expensive for practical flows.

The drawback of RANS: poor performance in flows
with separation, mean pressure gradient, curvature, or
swirling ...

Need to quantify and reduce model discrepancy in
RANS simulations.

14



Source of Uncertainty in RANS Models

+ Reynolds stress closure is the source of model form
uncertainty in RANS simulations.
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Source of Uncertainty in RANS Models

+ Reynolds stress closure is the source of model form
uncertainty in RANS simulations.
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Source of Uncertainty in RANS Models

+ Reynolds stress closure is the source of model form
uncertainty in RANS simulations.
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Dw
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Reynolds Stress
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Injectlng Uncertalnty in RANS Modelmg

, o, +(9(UU)+ | ap B a2U ; '
{ Ot 833j p(‘?:cz 8:13]8563 : ?i
| \ ~ _y \/_/ \ ‘

convection pressure grad. diffusion § ¢

k-0 model
Dw

D = P(w,U) — D(w,U) + T(w, U) 4

Injecting uncertainties directly to the Reynolds
stresses: output of the turbulence closure
[Xiao et al.] Our approach.

Injecting uncertainties to turbulence model
transport equations: form of the turbulence closure
[Duraisamy et al.]
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Critical Questions in
Physics-Informed Machine Learning

Objective: Reduce RANS model discrepancy by
learning from data.

Where does the training data come from?

What are the quantities to learn (responses, targets,
dependent variables)? Are they universal, at least to
some extent!

What are the features (predictors, independent
variables)?

What learning algorithm should be used?

17



Critical Questions in PIML

Objective: Reduce RANS model discrepancy by
learning from data.

“ Where does the training data come from?

+ What are the quantities to learn (responses, targets,
dependent variables)? Are they universal, at least to
some extent!

+ What are the features (predictors, independent
variables)?

+ What learning algorithm should be used!?
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Formulation: Inference (optional) + Machine Learning

Data Pressure, Skin friction, Velocity Xj
1a0 et al.
N(U) =
D
or FC: — P(w,U) — D(w,U) + T(w,U) Hs
Duraisamy et al.™

Information | Spatial discrepancy

Knowledge | functional discrepancy

Prediction : Injection into solver

[Duraisamy et al., 2015.AIAA]



Formulation: Inference (optional) + Machine Learning

Data Pressure, Skin friction, Velocity Xj
1a0 et al.
N(U) =
D
or F‘;’ — P(w,U) — D(w,U) + T(w,U) Hs
Duraisamy et al.™

Information | Spatial discrepancy
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Knowledge | functional discrepancy

Prediction : Injection into solver

[Duraisamy et al., 2015.AIAA]



Formulation: Inference (optional) + Machine Learning

Data Pressure, Skin friction, Velocity Xj
1a0 et al.
N(U) =
D
or F‘;’ — P(w,U) — D(w,U) + T(w,U) Hs
Duraisamy et al.™

Information | Spatial discrepancy

oT(x) or I(x)

Knowledge | functional discrepancy 57‘ (Q) or 5 (Q)

Prediction : Injection into solver

[Duraisamy et al., 2015.AIAA]



Formulation: Inference (optional) + Machine Learning

Data Pressure, Skin friction, Velocity Xiao et a]

or w7 = P(w,U) - D(w,U) +T(w,U) 4
t Duraisamy et al.™

Information | Spatial discrepancy
oT(x) or I(x)

Knowledge | functional discrepancy 57‘ (Q) or 5 (Q)

N(U) =V - (Trans + 07(q))

Prediction : Injection intosolver OF —=—~ — P—D+1T+ 5(Q)
[Duraisamy et al., 2015.AIAA]



Formulation: Inference (optional) + Machine Learning

Data Pressure, Skin friction, Velocity

N(U) =V - (Trans HoT
— P(w,U) = D(w,U) + T(w,U) 46

Dw
Dt Duraisamy et al.~”

T or(x)  or §(x)

Xiao et al.

Knowledge | functional discrepancy 57‘ (Q) or 5 (Q)

N(U) =V - (Trans + 07(q))

Prediction : Injection intosolver OF —=—~ — P—D+1T+ 5(Q)
[Duraisamy et al., 2015.AIAA]



Reynolds Stresses Obtained from DNS

Training: zoo of elementary flows Prediction:

Industrial flows

01 030507091113

Bs

(b)Case 2: Flow around a
Wall-Mounted Cube

0103050709 1113

(c)Case 3: Inclined Jet in Crossflow

(d)Case 4: Fully Developed Channel

01 0305070981113
(e)Case 5: Fully Developed

Square Duct Flow (f)Case 6: Perpendicular Jet in Crossflow

‘ ______a
01 03 05 07 09 11 Some figures adopted from Ling et al. POF 2015;

(g)Case 7: Flow around a Square Cylinder www.turbostream-cfd.com; youtube.com



http://www.turbostream-cfd.com
http://youtube.com

Critical Questions in PIML

Objective: Reduce RANS model discrepancy by
learning from data.

+* Where does the training data come from!?

“ What are the quantities to learn (responses, targets,
dependent variables)? Are they universal?

* VWVhat are the features (predictors, independent
variables)?

+ WVhat learning algorithm should be used!?

21



Injecting Uncertainty into Reynolds Stresses

. : laccarino et al.
 laccarino et al. perturbed towards [laccarino et al ]

three limiting states in Barycentric
triangle (realizability map) for

uncertainty estimation

1 1
T =2k (51 + a> = 2k (gl + VAVT>

Baseline RAN

T — ('1@577779017902;903)

magnitude, aspect ratio, orientation

Perturbed states
in Emory et al.

Physics-based “normalization”:
potential to be universal quantities;

Physical constraints respected.
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Is The Discrepancy of Anisotropy Universal?
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Probably!

Y
Y

| J.-L. Wu, J.-X. Wang, and H.

Xiao. A Bayesian
calibration-prediction
method for reducing model-
form uncertainties with
application in RANS
simulations. Flow,

Turbulence and Combustion,
2016.



From Physical Space to Feature Space: Learning

Construct discrepancy function based on “mean flow

features” q!
q Inferred or DNS, not

57- (X) universal (specific to
the geometry)

—> 57- (q) Machine learning

Responses are discrepancies in TKE (log),
eigenvalues and eigenvectors.

1 1
T =2k <§I+a> = 2k (§I+VAVT>

0log(k)(a), d&(a), én(a), dei(q)
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Critical Questions in PIML

Objective: Reduce RANS model discrepancy by
learning from data.

+* Where does the training data come from!

+ What are the quantities to learn (responses, targets,
dependent variables)? Are they universal, at least to
some extent!

“ VWVhat are the features (predictors, independent
variables)?

+ What learning algorithm should be used?

25



Construction of Feature Space

{S,9,Vp,Vk,Req, P/e, k/e, k}

4 tensors/vectors; 4/ invariants (integrity bases)

Invariants of 4 tensors/vectors: strain rate (S), rotation
rate (€)), pressure (p) gradient, TKE (k) gradient;

4 scalars: streamline curvature (K), wall-distance based
Reynolds number (Req), turbulent time scale

(Normalized) feature vector q has a length of ~50.

Very high dimension feature space: beyond human
comprehension: interpretation in progress.

Objective: train discrepancy functions 0T ; (q)
(Ling et al. 2016)

26



Should Feature Variables Be Invariant!?

“ Invariants is not only desirable, but essential!

“ Very different from other applications of ML, e.g,,
handwritten digits recognition.

Features should not be
fully invariant here!

27



Should Feature Variables Be Invariant!?

“ |nvariants is not only desirable, but essential!

“ Very different from other applications of ML, e.g,,
handwritten digits recognition.

flow
. i B @ |
01 03 05 07 09 11

flow

Features should not be
fully invariant here!



Critical Questions in PIML

Objective: Reduce RANS model discrepancy by
learning from data.

+* Where does the training data come from!

+ What are the quantities to learn (responses, targets,
dependent variables)? Are they universal, at least to
some extent!

+ What are the features (predictors, independent
variables)?

“ What algorithm should be used?
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Machine Learning Algorithm: Random Forests

. . . 6 ‘ ‘ L L ‘ ]
Machine learning is an e o o
5¢ i : ]
umbrella term for many %’ OAN o | e
: o N |
algorithms. Cl o \ | Hoe
O (3) % 0.4
We used Random Forests § A
o . . A 5 5 | Bo.
regression: (1) suitable for % s
high-dimension feature space a4 "% w © © 1
and (2) robust in tolerating wall distance
unimportant features; no linear <o | Rz
regression = more robust S l®:
inner layer , outer layer !
Key lesson: choice of algorithm — ————=
is diCtated by the PhYSicaI ;@viscoussublayeré buffer layer
__________________ —dp/ds >3 | —dp/ds <3

problem. SRS S — R

Physics-informed machine learning (b) regpesion tre



Decision Tree Example: Prediction of Salary

Stratifying baseball player salary data (color coded from
low (blue, green) to high (yellow, red)

200
|
°

150
|

Hits

100
|
@ees 000000 O O O
@ eweE © 0000 ®0 O O
°

50
o® o
o o
°

0
|
°

| | | |
15 20

10
Years

(Figure credit: Hastie and Tibshirani, Introduction to Statistical Learning)
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Decision tree for these data

Years,< 4.5
I

Yes

5.11

Hits <

No

117.5

Yes

6.00

No

6.74

(Figure credit: Hastie and Tibshirani, Introduction to Statistical Learning)
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Results

e Overall, the tree stratifies or segments the players into
three regions of predictor space: Ry ={X | Years< 4.5},
Ry ={X | Years>=4.5, Hits<117.5}, and R3 ={X |
Vears>=4.5, Hits>=117.5}.

Junior: 7
\ Senior;
R; high performance
% R~| 117.5
Senior;
R, low performance
1 4.5 24 1

Years
(Slide credit: Hastie and Tibshirani, Introduction to Statistical Learning)
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From Decision Tree to Random Forests

Individual decision trees = @m ™
are usually bad decision O ¢ \@ e
makers: greedy algorithm 20:3 S Y
may miss globally optimal 5 @3__,_\ |
stratification. 5 “_,_é |
Random forests: an = wall distance
ensemble of trees built Reg <0 | Peaz0_

from bootstrap samples. . tly®
Use only a subset of | b

features to de-correlate  (3)vicossayer! bt iayer

the trees. Cpfds >3 | —dpjds <3

Physical intuition!

(b) regression tree



Other Machine Learning Algorithms

+ With a feature space dimension of 50, many ML
algorithms susceptible to “curse of dimensionality” are

ruled out: e.g., linear regression and its variants; Gaussian
Process.

< Neural network seems to be viable choice with several
potential benefits (yet to be explored):

v  More natural for

coupled regression -5 In(k)

P 8 - se

v More flexible and 51

possibly better 01

. . . 5902
predictive skills. :

¥3

v Co-design!
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Case Study: Flow in a Square Duct

LLLLLLLLLL ///

Y,

In-plane -
secondary flow / 2 g
/ N7 /
i AN 2
7 . / . . . L/
Axis of / @ /./ |\ g

- symmet . .
&@\0 _y_ ........... !.}/],_ /@ !
%0« i ) /

h =0.5D

? : Lines along which secondary
flow velocities are shown later.

Y

’ (b)
The flow features in-plane secondary flow vortexes, which
cannot be predicted by standard RANS models.
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DNS Data for Duct Flows
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Velocity Prediction
with
Machine Learning
Corrected
Reynolds Stresses
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Case Study:
Separated Flows in Different Geometries
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Predicted Anisotropy in Separated Region
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Beyond Turbulence Modeling

Constitutive modeling of complex materials
Dynamics of atmospheric, ocean, and climate system

Combustion

Similar challenges to turbulent flows:

1.We do not understand the physics well enough to
describe/model them (e.g., chemical reactions)

2 .We cannot afford the computational cost to
adequately resolve the physics (e.g., micro-fibers, grains;
cloud, ABL, terrain)
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Analogy between
turbulent flows
and
dynamics of complex materials
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Analogy Between Turbulence & Solid Mechanics

» Turbulence can be + Complex materials can be
considered “a fluid with considered “a solid with
complex constitutive complex constitutive
behavior”’. behavior (stress/strain

relation)”.
T = 2145 B

1
S=—-(VU 'U 1
Z(V +VU) €:§(VU+VtU)

U = velocity U = displacement

V¢ = turbulent viscosity E = effective modulus
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Complex Heterogeneous Material

Experimental samples
of heterogeneous
material

Finite element Vest=2'ezV

mesh /»

apparently
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[Das & Ghanem, 2009]
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Where does the Complex Behavior come from?

The “complex behaviors™ in both problems do not
really exist if they were fully resolved, i.e.,

directly resolve all scales in turbulent flows (Direct
Numerical Simulation).

directly resolve all meso-scale constituents (fully
resolved FEM)

The “apparently” complex constitutive behavior is due
to the modeling of unresolved scales.

As a result the constitutive coefficients (V. or E) are
properties of the flow dynamics or structural dynamics,
and not the property of the materials (fluid or solid).
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Summary

Using ML in computational physics has unique
challenges.

In physics-informed machine learning, we utilize physical
constraints in all aspects of machine learning to address
these challenges.

Choose universal quantities based on physical prior
knowledge.

Preliminary success in RANS based turbulence
modeling. The objective is co-design of ML algorithm
and problem formulation.

Has potential well beyond turbulence modeling.

51



Collaborations ldeas

* Now: separate functions for each flow class;
Eventually: ML algorithm choose data automatically.

* Need benchmark database: elementary flows (free
shear, plane channel), flows of medium complexity
(separation, airfoil), to realistic flows (wing-body
junction) and industrial flows.

01 030507 0911 |

(g)Case T: Flow around a Square Cylinder

.

010305070911 13
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Collaboration ldeas

Evaluation of the PIML method in turbulence models

relevant to NASA (SA, k-0 SST, maybe an EARSM/
RSTM)

Dissemination by implementing/distributing in NASA
codes (e.g., CFL3D, FUN3D, OVERFLOW). Current
implementations are in open-source code

OpenFOAM with Python scripts.

Extensions beyond RANS-based turbulence modeling.
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Thank you!

Heng Xiao,Virginia Tech
hengxiao@yvt.edu

https://sites.google.com/a/vt.edu/hengxiao/home
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Physics-Informed Machine Learning: Perspectives

Assist but respect models: Machine learning should be
used to correct/improve existing models, not to replace

them. Thus, we learn the model discrepancy, not the model
output directly. (consensus)

1. Choose quantities that have physical bounds/constraints/
interpretation to learn (allow for anchoring to physics).

2. Learned quantities should be universal to some extent:

same functional form in training and prediction flows!
Note the limitation of universality though...

3. Obey physical constraints in the learning as much as
possible.
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