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Predictive Modeling & Model Discrepancy
❖ Reynolds Averaged Navier-Stoke 

(RANS) simulations are widely 
used in design, optimization, and 
reliability assessment of aero and 
space vehicles and gas turbines 
relevant to NASA missions.

❖ However, it remains challenging 
to predict system performance 
with confidence.

❖ Model discrepancy is a major 
obstacle in predictive 
modeling with RANS models.
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Origin of Model Discrepancy  
in Low Fidelity Models

1.We do not understand the physics well enough to 
describe/model them.

2.We cannot afford the computational cost to 
adequately resolve the physics.

❖ In many cases, model discrepancy originates from the 
combination of two.  

❖ The second reason is dominant for RANS based 
turbulence modeling, but it also depends on the 
interpretation.
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Using data to complement low fidelity models!
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Simulation in Support of Design and Optimization
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Calibration Cases  
(offline data)

Prediction Cases (no data)

Similar configuration with  
different:

• Twist

• Sweep angles

• Airfoil shape

A few configuration with 
data (DNS or 
measurements)

Machine learning



Scope of This Presentation
❖ Proposition: Machine learning in conjunction with (offline) 

data can be used to reduce model discrepancy of low-
fidelity models, which are often used in engineering design.

❖ Here, I share my perspectives and experiences of using 
physics-informed machine learning to assist modeling 
of complex physical systems. 

❖ RANS turbulence modeling, a typical low fidelity CFD 
model for turbulent flows, is used as example.

❖ However, the approach is general enough to be 
relevant for researchers of many other domains, e.g., 
structures, materials, combustion (flow and chemistry).
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Unique Challenges in ML for Computational Physics
❖ Why can’t we take the usual approach and simply use 

ML to learn what we want to know? Pressure, drag, lift, 
velocity, failure probability etc. May violate physics laws!

❖ There are many “hard constraints” originating from 
physics laws, e.g., velocity field is divergence free for 
incompressible fluid; pressure and velocity fields must 
be consistent (related via PDE); elasticity tensors must 
be positive definite, etc.

❖ Popular applications of ML has mostly “soft 
constraints”. Sentiment analysis in reviews: great, 
pleasant=5; terrible=1. Targeted advertisement: diapers 
go with infant toys.  Scientific document analysis: 
abstract, introduction, methodology, results, conclusion.
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Algorithm development has drawn inspirations from 
physics/biological systems, e.g., simulated annealing, 
particle swarm, genetic algorithm:  Not what I mean. 

Our interpretation of PIML: using ML to solve physical 
problems (mechanics of fluids, solids, materials, 
combustion).

 Incorporate physical constraints (e.g., conservation 
laws, realizability) in every aspect of ML:

formulation of the learning problem
choice/normalization of features and responses
choice/development of learning algorithm.

Co-design in (1) formulation of physical problem for 
learning; (2) ML algorithm development; (3) hardware.
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Physics-Informed Machine Learning: Clarification



Physics-Informed Machine Learning: Perspectives
Assist but respect models: Machine learning should be 
used to correct/improve existing models, not to replace 
them. Thus, we learn the model discrepancy, not the model 
output directly. (consensus)

1. Choose quantities that have physical bounds/constraints/
interpretation to learn (allow for anchoring to physics).

2. Learned quantities should be universal to some extent: 
same functional form in training and prediction flows! Note 
the limitation of universality though…

3. Obey physical constraints in the learning as much as 
possible (e.g., hard constraints such as positive semi-
definiteness of Reynolds stress; conservations of mass). 
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Case Study:  RANS-Based Turbulence Modeling

❖ Description of the challenge

❖ Problem formulation

❖ Procedure:  

❖ Choice of features and responses

❖ Choice of machine learning algorithm

❖ Results

❖ Possible extension to other systems
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RANS as Work-Horse Tool in CFD
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❖ RANS (Reynolds Averaged Navier-Stokes) solvers 
with turbulence closures are still the low-fidelity 
work-horse tool in industrial CFD simulations.

❖ High-fidelity methods such as LES and DNS are still 
too expensive for practical flows. 

❖ The drawback of RANS: poor performance in flows 
with separation, mean pressure gradient, curvature, or 
swirling …

❖ Need to quantify and reduce model discrepancy in 
RANS simulations.



Source of Uncertainty in RANS Models
❖ Reynolds stress closure is the source of model form 

uncertainty in RANS simulations.
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❖ Injecting uncertainties directly to the Reynolds 
stresses: output of the turbulence closure  
[Xiao et al.] Our approach.

❖ Injecting uncertainties to turbulence model 
transport equations: form of the turbulence closure 
[Duraisamy et al.]
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 Critical Questions in  
Physics-Informed Machine Learning

❖ Where does the training data come from?

❖ What are the quantities to learn (responses, targets, 
dependent variables)? Are they universal, at least to 
some extent?

❖ What are the features (predictors, independent 
variables)?

❖ What learning algorithm should be used?

17

Objective: Reduce RANS model discrepancy by 
learning from data.



 Critical Questions in PIML

❖ Where does the training data come from?

❖ What are the quantities to learn (responses, targets, 
dependent variables)? Are they universal, at least to 
some extent?

❖ What are the features (predictors, independent 
variables)?

❖ What learning algorithm should be used?

18

Objective: Reduce RANS model discrepancy by 
learning from data.
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Reynolds Stresses Obtained from DNS
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Training: zoo of elementary flows Prediction:  
Industrial flows

Some figures adopted from Ling et al. POF 2015; 
www.turbostream-cfd.com; youtube.com

085103-5 J. Ling and J. Templeton Phys. Fluids 27, 085103 (2015)

FIG. 1. Schematics of each case in the database showing contours of normalized velocity magnitude as predicted by RANS.
The velocity magnitude is normalized by the bulk velocity in cases 1, 4, and 5, by the free stream velocity in cases 2 and 7,
and by the average jet velocity in cases 3 and 6.

error. The di↵erence between the training and validation error is an indicator of the degree of
over-fitting occurring. This plot shows that as the number of data sets used for training increases,
the training error increases slightly and the validation error decreases significantly. Nevertheless, the
training error remains below the validation error, even when six cases are used for training, indicat-
ing that some over-fitting is still occurring. Therefore, the classifier performance would benefit from
a larger training database.

III. MACHINE LEARNING ALGORITHMS

Machine learning encompasses a variety of data-driven methods that include classifiers, regres-
sors, and clustering algorithms. Supervised machine learning algorithms use a set of labeled training
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Objective: Reduce RANS model discrepancy by 
learning from data.



❖ Iaccarino et al. perturbed towards 
three limiting states in Barycentric 
triangle (realizability map) for 
uncertainty estimation

22

Injecting Uncertainty into Reynolds Stresses

constrain the uncertainty space through a physics-based parameterization [15,16]:

⌧ = 2k

✓
1

3
I+ a

◆
= 2k

✓
1

3
I+V⇤VT

◆
(1)

where k is the TKE; a is the anisotropy tensor; V = [v1, v2, v3] and ⇤ = diag[�1,�2,�3] are its
orthonormal eigenvectors and eigenvalues, respectively, with �1 + �2 + �3 = 0. The decomposition
transforms the Reynolds stress to a space represented by six variables with clear physical inter-
pretations: k is the amplitude of ⌧ij ; �1, �2 indicate its shape; and v1, v2, v3 are its orientation.
Physically realizability of ⌧ij is ensured by constraining all perturbed Reynolds stresses such that k
is positive and that appropriate transformation of �1 and �2 reside within the Lumley triangle [17]
or Baycentric triangle [18] shown in Fig. 1.

(a) (b)

Figure 1: Physics-based prior for modeled Reynolds stress ⌧ (x). (a) The Lumley triangle [19] provides a
guide to ensure physical realizability of the prior for ⌧ . (b) Baycentric triangle [18] provides similar physical
realizability map but is more convenient for interpretation and implementation as the coordinates is a linear
combination or �1 and �2.

Jinlong: can you change the edge colors in the Lumley triangle, so that they correspond to the
Baycentric triangle? Also, the PS/AE/AC figures are blurred. I remember you have a better
version in your “turbulence modeling” project proposal. Please use those instead.

2.1.3 Smooth spatial distribution of Reynolds stress tensors

The Reynolds stress uncertainties at each cell can be di↵erent. A naiver parameterization of
the spatial distribution can lead to a large number of degrees of freedom (DOFs) that can be
prohibitively expensive for the inversion. However, physically the modeling errors of ⌧ can vary in
di↵erent regions of the flow but should be smooth in general. Length scale of this variation should
roughly correspond to that of the turbulence itself [20]. The smoothness allows us to parameterize
the distribution using appropriate basis sets such as the eigenfunctions of the covariance function as
in the Karhunen–Loeve (KL) expansion [21], orthogonal polynomials [22,23], wavelets [24], or radial
basis functions (RBF) [25]. The optimal choice of basis set depends on the specific characteristics
(e.g., smoothness, locality of support) of the prior. For example, one can model the perturbation

4

[Iaccarino et al.]

the vertices and edges are shown in Fig. 1a. The Barycentric triangle is similar to the Lumley179

triangle in that it also encloses all realizable turbulence states. Emory et al. [4] estimated180

the uncertainties in RANS simulations by perturbing the Reynolds stress towards the three181

limiting states, i.e., the vertices of the Barycentric triangle. This is illustrated in Fig. 1b as182

squares. Based on their work, Xiao et al. [7] further mapped the Barycentric coordinates183

to natural coordinates, on which the equilateral triangle is mapped to a unit square. They184

parameterized the uncertainty space on the natural coordinates and systematically explored185

the uncertainty space. The samples as obtained in Xiao et al. [7] are illustrated in Fig. 1b,186

which are in contrast to the three perturbed states of Emory et al. [4].187

(a)

Perturbed states
in Emory et al.

Perturbed states
in Xiao et al.

Baseline RANS

(b)

Figure 1: (a) Barycentric triangle as a way of delineating realizable turbulence, its definition and physical

interpretation. Elements in the set M+0
d

of positive semidefinite matrices maps to the interior and edges of

the triangle, while the set M+0
d

�M+
d

of singular matrices maps (whose element have zero determinants) maps

to the bottom edge. (b) Model-form uncertainty quantification through perturbation of Reynolds stresses

within the physically realizabile limit enclosed by the Barycentric triangle. The di↵erent schemes of Emory

et al. [4] and Xiao et al. [7] are shown.

While both Emory et al. [4] and Xiao et al. [7] injected uncertainties only to the magnitude188

and shape of the Reynolds stress tensor, it is theoretically possible to perturb the orientation189

as well. This work is not directly concerned with the physics-based approach for uncertainty190

quantification, but the physics-based parameterization will facilitate interpretations of the191

samples obtained with the random matrix approach. To this end, a parameterization scheme192

for the orthonormal eigenvectors E = [~e1,~e2,~e3] is needed. We use the Euler angle with the193

z-x0-z00 convention to describe the orientation of the Reynolds stress tensor [31]. That is, if a194

8

⌧ �! (k, ⇠, ⌘,'1,'2,'3)
magnitude, aspect ratio, orientation

Physics-based “normalization”: 
potential to be universal quantities;  

Physical constraints respected.
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Re=2800 Re=10595

Is The Discrepancy of Anisotropy Universal?

      J.-L. Wu, J.-X. Wang, and H. 
Xiao. A Bayesian 
calibration-prediction 
method for reducing model-
form uncertainties with 
application in RANS 
simulations. Flow, 
Turbulence and Combustion, 
2016.

Probably!

�⇠

�⌘



From Physical Space to Feature Space: Learning
❖ Construct discrepancy function based on “mean flow 

features” q!

24

❖ Responses are discrepancies in TKE (log), 
eigenvalues and eigenvectors.

Inferred or DNS, not 
universal (specific to 
the geometry)

constrain the uncertainty space through a physics-based parameterization [15,16]:

⌧ = 2k

✓
1

3
I+ a

◆
= 2k

✓
1

3
I+V⇤VT

◆
(1)

where k is the TKE; a is the anisotropy tensor; V = [v1, v2, v3] and ⇤ = diag[�1,�2,�3] are its
orthonormal eigenvectors and eigenvalues, respectively, with �1 + �2 + �3 = 0. The decomposition
transforms the Reynolds stress to a space represented by six variables with clear physical inter-
pretations: k is the amplitude of ⌧ij ; �1, �2 indicate its shape; and v1, v2, v3 are its orientation.
Physically realizability of ⌧ij is ensured by constraining all perturbed Reynolds stresses such that k
is positive and that appropriate transformation of �1 and �2 reside within the Lumley triangle [17]
or Baycentric triangle [18] shown in Fig. 1.

(a) (b)

Figure 1: Physics-based prior for modeled Reynolds stress ⌧ (x). (a) The Lumley triangle [19] provides a
guide to ensure physical realizability of the prior for ⌧ . (b) Baycentric triangle [18] provides similar physical
realizability map but is more convenient for interpretation and implementation as the coordinates is a linear
combination or �1 and �2.

Jinlong: can you change the edge colors in the Lumley triangle, so that they correspond to the
Baycentric triangle? Also, the PS/AE/AC figures are blurred. I remember you have a better
version in your “turbulence modeling” project proposal. Please use those instead.

2.1.3 Smooth spatial distribution of Reynolds stress tensors

The Reynolds stress uncertainties at each cell can be di↵erent. A naiver parameterization of
the spatial distribution can lead to a large number of degrees of freedom (DOFs) that can be
prohibitively expensive for the inversion. However, physically the modeling errors of ⌧ can vary in
di↵erent regions of the flow but should be smooth in general. Length scale of this variation should
roughly correspond to that of the turbulence itself [20]. The smoothness allows us to parameterize
the distribution using appropriate basis sets such as the eigenfunctions of the covariance function as
in the Karhunen–Loeve (KL) expansion [21], orthogonal polynomials [22,23], wavelets [24], or radial
basis functions (RBF) [25]. The optimal choice of basis set depends on the specific characteristics
(e.g., smoothness, locality of support) of the prior. For example, one can model the perturbation

4

Machine learning

�⌧ (x)

) �⌧ (q)

�⌧ i(q)

� log(k)(q), �⇠(q), �⌘(q), �'1(q)



 Critical Questions in PIML

❖ Where does the training data come from?

❖ What are the quantities to learn (responses, targets, 
dependent variables)? Are they universal, at least to 
some extent?

❖ What are the features (predictors, independent 
variables)?

❖ What learning algorithm should be used?

25

Objective: Reduce RANS model discrepancy by 
learning from data.



Construction of Feature Space

❖ Invariants of 4 tensors/vectors: strain rate (S), rotation 
rate (Ω), pressure (p) gradient, TKE (k) gradient; 

❖ 4 scalars: streamline curvature (κ), wall-distance based 
Reynolds number (Red), turbulent time scale

❖ (Normalized) feature vector q has a length of ~50.

❖ Very high dimension feature space: beyond human 
comprehension: interpretation in progress.
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Construction of Features Based on Integrity Basis

Xiao et al.

July 16, 2016

1 Minimum Bases

We choose the following set of tensors, vectors, and scalars as a minimum bases:

Tensors/vectors fully represented: {S,⌦,rp,rk} (1)

Scalars: {Re

d

,P/",, k/"} (2)

Vectors partial represented: {U} (3)

{S,⌦,rp,rk,Re

d

,P/", k/",} (4)

• U : mean flow velocity.

• S

ij

=

1
2

⇣
@Ui
@xj

+

@Ui
@xi

⌘
is the rate of strain tensor.

• ⌦

ij

=

1
2

⇣
@Ui
@xj

� @Ui
@xi

⌘
is the rate of rotation tensor.

• rp is the pressure gradient.

• rk is the gradient of turbulent kinetic energy.

• Re

d

=

p
kd/⌫ is the wall distance based Reynolds number.

• P/" indicates the ratio of turbulence production and dissipation.

• k/" indicates the turbulent time scale.

• : mean flow streamline curvature.

1

4 tensors/vectors; 47 invariants (integrity bases)

Objective: train discrepancy functions �⌧ i(q)
(Ling et al. 2016)



Should Feature Variables Be Invariant?
❖ Invariants is not only desirable, but essential!

❖ Very different from other applications of ML, e.g., 
handwritten digits recognition.

27

Features should not be  
fully invariant here!



Should Feature Variables Be Invariant?
❖ Invariants is not only desirable, but essential!

❖ Very different from other applications of ML, e.g., 
handwritten digits recognition.

27

Features should not be  
fully invariant here!

Fully invariant is essential

085103-5 J. Ling and J. Templeton Phys. Fluids 27, 085103 (2015)

FIG. 1. Schematics of each case in the database showing contours of normalized velocity magnitude as predicted by RANS.
The velocity magnitude is normalized by the bulk velocity in cases 1, 4, and 5, by the free stream velocity in cases 2 and 7,
and by the average jet velocity in cases 3 and 6.

error. The di↵erence between the training and validation error is an indicator of the degree of
over-fitting occurring. This plot shows that as the number of data sets used for training increases,
the training error increases slightly and the validation error decreases significantly. Nevertheless, the
training error remains below the validation error, even when six cases are used for training, indicat-
ing that some over-fitting is still occurring. Therefore, the classifier performance would benefit from
a larger training database.

III. MACHINE LEARNING ALGORITHMS

Machine learning encompasses a variety of data-driven methods that include classifiers, regres-
sors, and clustering algorithms. Supervised machine learning algorithms use a set of labeled training
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 Critical Questions in PIML

❖ Where does the training data come from?

❖ What are the quantities to learn (responses, targets, 
dependent variables)? Are they universal, at least to 
some extent?

❖ What are the features (predictors, independent 
variables)?

❖ What algorithm should be used?
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Objective: Reduce RANS model discrepancy by 
learning from data.



Machine Learning Algorithm: Random Forests
❖ Machine learning is an 

umbrella term for many 
algorithms.  

❖ We used Random Forests 
regression: (1) suitable for 
high-dimension feature space 
and (2) robust in tolerating 
unimportant features; no linear 
regression = more robust

❖ Key lesson: choice of algorithm 
is dictated by the physical 
problem.
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(a) periodic hill (prediction)

(b) curved step (training)

FIG. 1: (a) The flow over periodic hills at
Re = 10595 (prediction case), and (b) the flow over

a curved backward-facing step at Re = 13200
(training case). Another scenario is considered with
the flow over periodic hills at Re = 5600 used as

the training case.

FIG. 2: Barycentric triangle used to indicate the
dimensionality of the turbulence state. Typical

mapped locations of near wall turbulence states are
indicated. Typical RANS predicted spatial

variation from the wall to the outer layer as well as
the truth are indicated with arrows.

(a) feature space stratification

inner layer outer layer

viscous sublayer buffer layer

strong 
pressure gradient

mild 
pressure gradient

1

2

3 4

(b) regression tree

FIG. 3: Schematic of a simple regression tree in a
two-dimensional feature space (pressure gradient
along streamline dp/ds and wall-distance based

Reynolds number Re
d

), showing (a) the
stratification of feature space and (b) the

corresponding regression tree built from the
training data. The response is the discrepancy �⌘
in the Barycentric triangle of the RANS predicted
Reynolds stress. When predicting the discrepancy
for a given feature vector q̃, the tree model in (b) is
traversed to identify the leaf, and the mean of the
training data is taken as the prediction �⌘(q̃).
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(a) periodic hill (prediction)

(b) curved step (training)

FIG. 1: (a) The flow over periodic hills at
Re = 10595 (prediction case), and (b) the flow over

a curved backward-facing step at Re = 13200
(training case). Another scenario is considered with
the flow over periodic hills at Re = 5600 used as

the training case.

FIG. 2: Barycentric triangle used to indicate the
dimensionality of the turbulence state. Typical

mapped locations of near wall turbulence states are
indicated. Typical RANS predicted spatial

variation from the wall to the outer layer as well as
the truth are indicated with arrows.

(a) feature space stratification

(b) regression tree

FIG. 3: Schematic of a simple regression tree in a
two-dimensional feature space (pressure gradient
along streamline dp/ds and wall-distance based

Reynolds number Re
d

), showing (a) the
stratification of feature space and (b) the

corresponding regression tree built from the
training data. The response is the discrepancy �⌘
in the Barycentric triangle of the RANS predicted
Reynolds stress. When predicting the discrepancy
for a given feature vector q̃, the tree model in (b) is
traversed to identify the leaf, and the mean of the
training data is taken as the prediction �⌘(q̃).
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Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)
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Decision Tree Example: Prediction of Salary

30
(Figure credit: Hastie and Tibshirani, Introduction to Statistical Learning)

❖ Stratifying baseball player salary data (color coded from 
low (blue, green) to high (yellow, red) 
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Decision tree for these data

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

5 / 51

Yes No

Yes No

(Figure credit: Hastie and Tibshirani, Introduction to Statistical Learning)
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Results

• Overall, the tree stratifies or segments the players into
three regions of predictor space: R1 ={X | Years< 4.5},
R2 ={X | Years>=4.5, Hits<117.5}, and R3 ={X |
Years>=4.5, Hits>=117.5}.

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

7 / 51

Junior
Senior;  
high performance

Senior;  
low performance

(Slide credit: Hastie and Tibshirani, Introduction to Statistical Learning)



From Decision Tree to Random Forests
❖ Individual decision trees 

are usually bad decision 
makers: greedy algorithm 
may miss globally optimal 
stratification.

❖ Random forests: an 
ensemble of trees built 
from bootstrap samples.

❖ Use only a subset of 
features to de-correlate 
the trees.

❖ Physical intuition!
33

(a) periodic hill (prediction)

(b) curved step (training)

FIG. 1: (a) The flow over periodic hills at
Re = 10595 (prediction case), and (b) the flow over

a curved backward-facing step at Re = 13200
(training case). Another scenario is considered with
the flow over periodic hills at Re = 5600 used as

the training case.

FIG. 2: Barycentric triangle used to indicate the
dimensionality of the turbulence state. Typical

mapped locations of near wall turbulence states are
indicated. Typical RANS predicted spatial

variation from the wall to the outer layer as well as
the truth are indicated with arrows.

(a) feature space stratification

inner layer outer layer

viscous sublayer buffer layer

strong 
pressure gradient

mild 
pressure gradient

1

2

3 4

(b) regression tree

FIG. 3: Schematic of a simple regression tree in a
two-dimensional feature space (pressure gradient
along streamline dp/ds and wall-distance based

Reynolds number Re
d

), showing (a) the
stratification of feature space and (b) the

corresponding regression tree built from the
training data. The response is the discrepancy �⌘
in the Barycentric triangle of the RANS predicted
Reynolds stress. When predicting the discrepancy
for a given feature vector q̃, the tree model in (b) is
traversed to identify the leaf, and the mean of the
training data is taken as the prediction �⌘(q̃).
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Re = 10595 (prediction case), and (b) the flow over

a curved backward-facing step at Re = 13200
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FIG. 3: Schematic of a simple regression tree in a
two-dimensional feature space (pressure gradient
along streamline dp/ds and wall-distance based

Reynolds number Re
d

), showing (a) the
stratification of feature space and (b) the

corresponding regression tree built from the
training data. The response is the discrepancy �⌘
in the Barycentric triangle of the RANS predicted
Reynolds stress. When predicting the discrepancy
for a given feature vector q̃, the tree model in (b) is
traversed to identify the leaf, and the mean of the
training data is taken as the prediction �⌘(q̃).
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Other Machine Learning Algorithms
❖ With a feature space dimension of 50, many ML 

algorithms susceptible to “curse of dimensionality” are 
ruled out: e.g., linear regression and its variants; Gaussian 
Process. 

❖ Neural network seems to be viable choice with several 
potential benefits (yet to be explored):

34

� ln(k)

�⇠

�⌘

�'1

�'2

�'3

q1

q2

q3
...

q51

✓ More natural for 
coupled regression.

✓ More flexible and 
possibly better 
predictive skills.

✓ Co-design?



Case Study: Flow in a Square Duct

35

3.1.2. Flow in Square Duct

The fully developed turbulent flow in a square duct is a widely known case for which

RANS models fail to predict the secondary flow induced by Reynolds stress imbalances [22].

A schematic is presented in Fig. 9 to show the physical domain, major features of the

flow, and the dimensions of the computational domain. Since the flow is fully developed

in the streamwise direction, a two-dimensional simulation is performed. The computational

domain only covers a quarter of the cross-section as shown in Fig. 9b based on the symmetry

of the computational domain along y and z directions. All lengths are normalized by the

height of the computational domain h = 0.5D, where D is the height of the duct. The

Reynolds number Re is based on duct height D and bulk velocity Ub. The Reynolds stress

discrepancies are calibrated on the flow at Re = 1⇥ 104, and predictions are made for flows

at Re = 8.3⇥ 104 and 2.5⇥ 105.

In-plane 
secondary flow

Main 

flow

Axis of
symmetry

  : Lines along which secondary 
flow velocities are shown later.

(a)

(c)

(b)

Figure 9: Domain shape for the flow in a square duct. The x coordinate represents the streamwise direction.

Secondary flows induced by Reynolds stress imbalance exist in the y–z plane. Panel (b) shows that the

computational domain covers a quarter of the cross-section of the physical domain. This is due to the

symmetry of the mean flow in both y and z directions as shown in panel (c).

As in the periodic hill cases presented above, we only consider uncertainties in parameters

24

The flow features in-plane secondary flow vortexes, which 
cannot be predicted by standard RANS models.



−1 0 1
−1

0

1

Re
b
=2200

z

y

−1 0 1
−1

0

1

Re
b
=2400

z

y

−1 0 1
−1

0

1

Re
b
=2600

z

y
−1 0 1

−1

0

1

Re
b
=2900

z

y

−1 0 1
−1

0

1

Re
b
=3200

z

y

−1 0 1
−1

0

1

Re
b
=3500

z
y

Prediction  
Re3500

Training 
Re2600

Training 
Re2900

Training 
Re2200

DNS Data for Duct Flows 



37
−1 0 1

−1

0

1

Re
b
=2200

z

y
Arrows:  
In-plane  
velocity

Color:  
streamwise  
velocity

Lines:  
contours 
U/Umax  
= 0.5 and 0.8



38
−1 0 1

−1

0

1

Re
b
=2600

z

y
Arrows:  
In-plane  
velocity

Color:  
streamwise  
velocity

Lines:  
contours 
U/Umax  
= 0.5 and 0.8



−1 0 1
−1

0

1

Re
b
=2900

z

y
Arrows:  
In-plane  
velocity

Color:  
streamwise  
velocity

Lines:  
contours 
U/Umax  
= 0.5 and 0.8



−1 0 1
−1

0

1

Re
b
=3500

z

y
Arrows:  
In-plane  
velocity

Color:  
streamwise  
velocity

Lines:  
contours 
U/Umax  
= 0.5 and 0.8



Baseline:RSTM DNS ML Prediction

⌧zz

⌧yy



DNS ML Assisted Prediction

Baseline  
(RSTM)

Velocity Prediction 
with  

Machine Learning  
Corrected  

Reynolds Stresses



DNS
ML-Assisted  
Prediction

Baseline  
(RSTM)

Secondary velocity  
pattern near corner

Significance success in 
using ML towards  
predictive turbulence 
modeling.



44

Case Study:  
Separated Flows in Different Geometries
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Source: http://turbmodels.larc.nasa.gov/
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Training flows
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Predicted Anisotropy in Separated Region

45

Separation region

 Trained on  
cases with 
different  
geometry

x/H=2

x/H=4

2C 1C

3C

C1 C2

C3

Baseline

Predicted

Benchmark
x/H

y/H

(a) x/H = 1

x/H

y/H

2C 1C

3C

C1 C2

C3

(b) x/H = 2

(c) x/H = 3 (d) x/H = 4

Figure 9: Barycentric map of the predicted Reynolds stress anisotropy for the test flow (PH10595) learned from

training flows with di↵erent geometries and at di↵erent Reynold numbers (WC360 and CS13200). The prediction

results on four streamwise locations at x/H = 1, 2, 3, 4 are compared with the corresponding baseline and benchmark

results in panels (a)–(d), respectively. These four locations correspond to the beginning, center, downstream, and

end of the separation bubble, which are indicated in the insets of each panel. The arrow denotes the order of samples

plotted in the triangle.
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plotted in the triangle.
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Beyond Turbulence Modeling

❖ Constitutive modeling of complex materials 

❖ Dynamics of atmospheric, ocean, and climate system

❖ Combustion

❖ … …

46

1.We do not understand the physics well enough to 
describe/model them (e.g., chemical reactions)

2.We cannot afford the computational cost to 
adequately resolve the physics (e.g., micro-fibers, grains; 
cloud, ABL, terrain)

Similar challenges to turbulent flows:



Analogy between 
turbulent flows 

and 
dynamics of complex materials

47



Analogy Between Turbulence & Solid Mechanics
❖ Turbulence can be 

considered “a fluid with 
complex constitutive 
behavior”.

48

❖ Complex materials can be 
considered “a solid with 
complex constitutive 
behavior (stress/strain 
relation)”.

⌧ = 2⌫tS

S =
1

2
(rU +rtU)

⌧ = E"

" =
1

2
(rU +rtU)

U = displacement

E = effective modulus

U = velocity

νt = turbulent viscosity



Complex Heterogeneous Material
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Fig. 5.2. Schematic illustration of the nonparametric homogenization scheme; Vtest refers to
the size of the test specimen.

other models constrained by just either bounds (matrix-variate Beta type I probability
model) or the mean matrix (Wishart or matrix-variate Gamma probability model).
The next task in the analysis is, therefore, to estimate the parameters of the matrix-
variate Kummer-Beta pdf by following the scheme described in section 3.2.1 with

cl = c(samp)
l , cu = c(samp)

u , and C = C(samp). In solving the constrained minimization
problem defined by (3.28), (3.30), (3.31), and (3.33), a hybrid global and local opti-
mization technique is employed to determine the triplet of parameters, (a, b,ΛU). A
set of several random points (4000 points here) is first generated in the joint domain
of the parameters, (a, b,ΛU), as a set of possible initial points, and then a subset of
the best initial points (200 points) from these randomly generated 4000 points is care-
fully chosen. Subsequently, a local optimization algorithm is invoked at each of these
best initial points. The local optimization algorithm successfully converges only for
62 initial points out of these chosen 200 initial points resulting in a set of 62 triplets
of the optimized parameters. The minimum (over the set of 62 optimized triplets of
parameters) value of the objective function defined by (3.28) is 0.0071. The associated
relative mean-squared error (relMSE) of the analytical ensemble mean, E[U], relative
to U (samp) defined by

(5.5) relMSE(E[U], U (samp)) = 100× ∥U (samp) − E[U]∥2F
∥U (samp)∥2F

,

turns out to be 4.7492%, in which E[U] is calculated by (3.27) and the sample es-
timate, U (samp), is computed by the rhs of (3.22) with C(samp) being given by (5.4)
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❖ The “complex behaviors” in both problems do not 
really exist if they were fully resolved, i.e., 

❖ directly resolve all scales in turbulent flows (Direct 
Numerical Simulation).

❖ directly resolve all meso-scale constituents (fully 
resolved FEM)

❖ The “apparently” complex constitutive behavior is due 
to the modeling of unresolved scales.

❖ As a result the constitutive coefficients (νt or E) are 
properties of the flow dynamics or structural dynamics, 
and not the property of the materials (fluid or solid).

Where does the Complex Behavior come from?



Summary
❖ Using ML in computational physics has unique 

challenges.

❖ In physics-informed machine learning, we utilize physical 
constraints in all aspects of machine learning to address 
these challenges.

❖ Choose universal quantities based on physical prior 
knowledge.

❖ Preliminary success in RANS based turbulence 
modeling.  The objective is co-design of ML algorithm 
and problem formulation.

❖ Has potential well beyond turbulence modeling.
51



Collaborations Ideas

❖ Need benchmark database: elementary flows (free 
shear, plane channel), flows of medium complexity 
(separation, airfoil), to realistic flows (wing-body 
junction) and industrial flows.
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085103-5 J. Ling and J. Templeton Phys. Fluids 27, 085103 (2015)

FIG. 1. Schematics of each case in the database showing contours of normalized velocity magnitude as predicted by RANS.
The velocity magnitude is normalized by the bulk velocity in cases 1, 4, and 5, by the free stream velocity in cases 2 and 7,
and by the average jet velocity in cases 3 and 6.

error. The di↵erence between the training and validation error is an indicator of the degree of
over-fitting occurring. This plot shows that as the number of data sets used for training increases,
the training error increases slightly and the validation error decreases significantly. Nevertheless, the
training error remains below the validation error, even when six cases are used for training, indicat-
ing that some over-fitting is still occurring. Therefore, the classifier performance would benefit from
a larger training database.

III. MACHINE LEARNING ALGORITHMS

Machine learning encompasses a variety of data-driven methods that include classifiers, regres-
sors, and clustering algorithms. Supervised machine learning algorithms use a set of labeled training
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❖ Now: separate functions for each flow class; 
Eventually: ML algorithm choose data automatically.



❖ Evaluation of the PIML method in turbulence models 
relevant to NASA (SA, k-ω SST, maybe an EARSM/
RSTM) 

❖ Dissemination by implementing/distributing in NASA 
codes (e.g., CFL3D, FUN3D, OVERFLOW).  Current 
implementations are in open-source code 
OpenFOAM with Python scripts.

❖ Extensions beyond RANS-based turbulence modeling.
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Collaboration Ideas



Thank you!
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Physics-Informed Machine Learning: Perspectives

Assist but respect models: Machine learning should be 
used to correct/improve existing models, not to replace 
them. Thus, we learn the model discrepancy, not the model 
output directly. (consensus)

1. Choose quantities that have physical bounds/constraints/
interpretation to learn (allow for anchoring to physics).

2. Learned quantities should be universal to some extent: 
same functional form in training and prediction flows! 
Note the limitation of universality though…

3. Obey physical constraints in the learning as much as 
possible. 
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