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NASA’s Interest in Quantum Computing

Credit: NASA/JPL-Caltech

Landing sequence for Mars rover Curiosity 

including “seven minutes of terror.”

NASA’s Pleiades is one 
of the top 20 fastest 
supercomputers in the 
world

NASA constantly confronting 
massively challenging 
computational problems

• Computational capacity 
limits mission scope and 
aims

NASA QuAIL team mandate: 
Determine the potential for 
quantum computation to 
enable more ambitious NASA 
missions in the future



APPLICATION PROBLEMS

Tailored problems to 
show quantum 
enhancement

QA solvers for 
complex planning and 
scheduling problems

Hidden bottlenecks of 
large-scale problems

Annealing theory of 
embedded problems

Phase transitions in 
application problems

Graph-based fault-
detection problems

Device calibration 
techniques

Study of annealing 
in 1D chains

NASA Quantum Research Approach

Design of new 
application-
focused QA 

architectures

Error suppression 
techniques

Static and dynamical 
noise in SQUIDs

Machine 
Learning and 

Artificial 
Intelligence

Circuit 
optimization and 

compilation

New embedding 
techniques

4

Insights into and 
intuitions for 

quantum heuristics 

Future 
architectural 

design elements
Optimal 

parameter setting



NASA QuAIL team focus
Long term
• Determine breadth of quantum 

computing applications
• Evaluate and utilize quantum 

hardware
– Develop programming principles,

compilation strategies
– Characterize the hardware 

capabilities, noise
– Determine how to harness 

quantum effects for 
computational purposes 

• Explore potential QC 
applications of NASA relevance
– Evaluate most promising near- and 

middle-term application directions

Ongoing efforts
• Initial target: quantum 

annealing
• Earliest quantum hardware 

available: D-Wave quantum 
annealers

• Most prominent quantum 
heuristic

• Widely applicable to 
optimization problems

• Advantages unknown

• Near-term target: emerging 
quantum computing 
hardware
• Small Universal QCs 
• More advanced QAs



Emerging quantum hardware
Special purpose

Quantum annealers

Run one type of quantum heuristic for 

optimization

General purpose

Universal quantum computers

6

DWave

Google Martinis lab

MIT-LL

Rigetti

Uses of emerging, but limited, quantum computational devices? 

Currently too small to be useful for solving practical problems

(1) Quantum supremacy

(2) Develop intuitions for quantum heuristic algorithms



Quantum 
computing can 
do everything a 
classical 
computer can do

and
Provable 
quantum 
advantage 
known for a few 
dozen quantum 
algorithms

Unknown quantum advantage
• Even for classical computation

• Provable bounds hard to obtain

• Analysis is just too difficult

• Best classical algorithm not known for 
most problems

• Ongoing development of classical 
heuristic approaches 
• Analyzed empirically: ran and see what 

happens

• E.g. SAT, planning, machine learning, etc. 
competitions

• Emerging quantum hardware enables 
evaluation of heuristic quantum 
algorithms

A handful 
of proven 
limitations 
on 
quantum 
computing

Status of quantum algorithms

Conjecture: Quantum Heuristics will significantly broaden 

applications of quantum computing



Recent NASA Ames Gate-Model QC work

• Quantum supremacy 
(joint with Google)
– C. Neill et al., A blueprint 

for demonstrating 
quantum supremacy with 
superconducting qubits, 
arXiv:1709.06678

– S. Boixo et al., 
Characterizing quantum 
supremacy in near-term 
devices, arXiv:1608.00263

• Quantum simulation 
(joint with Google)
– J. R. McClean et al., 

OpenFermion: The 
Electronic Structure 
Package for Quantum 
Computers, 
arXiv:1710.07629

• Extended Framework for QAOA circuits
– S. Hadfield et al., From the Quantum Approximate 

Optimization Algorithm to a Quantum Alternating 
Operator Ansatz, arXiv:1709.03489

• Analysis for problems with symmetry
– Z. Jiang et al., Near-optimal quantum circuit for 

Grover's unstructured search using a transverse 
field, PRA 95 (6), 062317, 2017.

– Z. Wang et al., The Quantum Approximation 
Optimization Algorithm for MaxCut: A Fermionic 
View, arXiv:1706.02998

• Compilation to emerging hardware 
architectures
– D. Venturelli et al., Compiling Quantum Circuits to 

Realistic Hardware Architectures using Temporal 
Planners, arXiv:1705.08927 



Based on the Quantum Approximate 
Optimization Algorithm
• A gate model heuristic due to Farhi et al.
• Iterates  between two Hamiltonians, p 

times
– Phase separation (encodes cost 

function) 
– Mixing 

Early results by Farhi and co-authors
• p → ∞: from AQO

– Converges to optimum for p → ∞
• p = 1: from IQP circuits 

– Provably hard to sample output 
efficiently classically (up to standard 
complexity theory conjectures)

– Beat existing classical approximation 
ratio on MaxE3Lin2 only to inspire a 
better classical algorithm

Our Quantum Alternating Operator 
Ansatz

– Allows more general mixing 
operators, providing massive 
improvements in 
implementability

– Supports broader class of 
optimization problems having a 
mix of hard and soft constraings

– Reworked QAOA acronym to 
support applications to exact 
optimization and sampling as 
well as approximate 
optimization

• Mapped 20+ problems to QAOA 
formalism

Quantum Alternating Operator Ansatz

S. Hadfield et al., From the Quantum Approximate Optimization 
Algorithm to a Quantum Alternating Operator Ansatz, 
arXiv:1709.03489



Parameter setting for QAOA

How hard is it to find good parameters for 

QAOA?

• Success of QAOA framework will 

largely depend on this question

For fixed p, search for optimal parameters 

poly in n, the number of variables

Exhaustive search quickly becomes 

inefficient; curse of dimensionality

How complicated is the parameter space?

Explored parameter setting for Maxcut on 

the ring (arXiv:1706.02998)

QAOA circuit for Grover’s problem 

recovers root N query complexity

• First QAOA result for p>> 1

Strong relation between parameter setting 

in QAOA and in VQE

Future work

Are there identifiable properties of the 

evolution that correlate with success

Explore the use of measurement in the 

course of the algorithm to aid in setting 

parameters for the next steps

Characterize the parameter space and 

properties that determine the difficultly 

of the search for good parameters

Improved classical-quantum loop for 

parameter setting



Compilation to realistic hardware

Applied temporal planning to quantum 

circuit compilation

Initial experiments focused on

• QAOA circuits for Maxcut because of 

their high number of commuting gates 

• A hardware architecture proposed by 

Rigetti - gates were available between 

neighboring qubits varied

Mapped circuit compilation problem to a 

temporal planning problem, and ran 

several state-of-the-art temporal 

planners compile

Demonstrated temporal planning is a 

viable approach to circuit compilation

Future work

• Map circuit compilation to other 

formalisms to run state-of-the-art 

solvers, determining relative 

advantages of the different approaches

• Use insights gained to develop our own 

compilation approach taking the best 

properties of existing solvers 

• Explore different initial starting states, 

and starting state setting algorithms

• Compile more general circuits

• Complex hardware requirements, noise 

tradeoffs and crosstalk

• Objectives beyond makespan



Application focus areas

Planning and scheduling

Fault Diagnosis

Machine Learning

Outcomes from application investigations

Future QA architectural design elements

Programming and parameter setting

Hybrid quantum-classical approaches

Application-specific and general classical 

solvers

Physical insights into and intuitions for QA

Quantum-enhanced 

applications

QC programming

Novel classical solvers

Physics Insights

Analytical methodsSimulation tools

Biswas, et al. Parallel Computing (2016) – perspective article

NASA quantum annealing efforts



Upgrade from Vesuvius to Washington to Whistler

D-Wave Two™ D-Wave 2X™ D-Wave 2000Q™

512 (8x8x8) qubits “Vesuvius” 1152 (8x12x12) qubit 

“Washington”

2048 (8x16x16) qubit “Whistler”

509 qubits working – 95% yield 1097 qubits working – 95% yield 2038 qubits working – 97% yield

1472 J programmable couplers 3360 J programmable couplers 6016 J programmable couplers

20 mK max operating 

temperature (18 mK nominal)

15 mK Max operating 

temperature (13 mK nominal)

15 mK Max operating temperature 

(nominal to be measured)

5% and 3.5% precision level for 

h and J

3.5% and 2% precision level for h

and J

To be measured.

Annealing time 20 ms Annealing time improved 4x (5ms) Annealing time improved 5x (1ms)

Initial programming time improved 

20% (9 ms). New anneal offset, 

pause and quench features.



Analytical and numerical tools and expertise

Physics insights into QA algorithms

Benchmarking QA resources and architectures

Kechedzhi, et al., PRX 6, 021028 (2016)

Knysh. Nat. Comm 7,12370 (2016)

Smelyanskiy, et al. PRL 118, 066802 (2017)

Jiang, et al. PRA 95, 012322 (2017) 

Jiang, et al. arXiv:1708.07117 (2017)

Linear chains

Quantum diffusion

Tensor Networks

DMRG

Semi-classical approx. 

Sherrington-Kirkpatrick model

Hopfield model

p-spin models

Instantons

MPO

ML for QC

Feynman diagramatics

Master equations

QMC

Venturelli, et al. PRX 5, 031040 (2015)

Mandrà, et al. PRA 94, 022337 (2016)

Mandrà, et al. Quantum Sci. Tech. 2, 3 (2017)

Mandrà, et al. PRL, 118, 070502 (2017)

Perdomo-Ortiz, et al. arXiv:1708.09780 (2017)



How to verify quantum speed-up?

● Any claims of quantum speed-up must be compared to best 

classical algorithms

● Quantum speed-up can be classified as [1]:

○ Provable quantum speed-up

○ Strong quantum speed-up

○ Potential quantum speed-up

○ Limited quantum speed-up

■ Non-tailored quantum speed-up

■ Tailored quantum speed-up

Theoretical approach

Numerical approach

[1] S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, H.G. Katzgraber, PRE (2016)



State-of-the-art classical algorithms

Population Annealing [2] (PA)

Isoenergetic Cluster Method [3] (ICM)

Hybrid Cluster Method [4] (HCM)

Hamze-de Freitas-Selby [5] (HFS)

Super-Spin [6] (SS)
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[2] J. Machta, PRE (2010) - W. Wang, J. Machta & H.G. Katzgraber, PRE (2015)

[3] Z. Zhu, A.J. Ochoa & H.G. Katzgraber, PRL (2015)

[4] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas & V. Smelyanskiy, PRX (2015)

[5] F. Hamze & N. de Freitas, Proceeding (2004) - A. Selby, arXiv (2014)

[6] S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, H.G. Katzgraber, PRE (2016)

Open-boundary QMC [1] 

[1] Z. Jiang, V. Smelyanskiy, S. Boixo & H. Neven, In preparation (2017)



State-of-the-art classical algorithms

Population Annealing [2] (PA)

Isoenergetic Cluster Method [3] (ICM)

Hybrid Cluster Method [4] (HCM)

Hamze-de Freitas-Selby [5] (HFS)
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[2] J. Machta, PRE (2010) - W. Wang, J. Machta & H.G. Katzgraber, PRE (2015)

[3] Z. Zhu, A.J. Ochoa & H.G. Katzgraber, PRL (2015)

[4] D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas & V. Smelyanskiy, PRX (2015)

[5] F. Hamze & N. de Freitas, Proceeding (2004) - A. Selby, arXiv (2014)

[6] S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, H.G. Katzgraber, PRE (2016)

Open-boundary QMC [1] 

[1] Z. Jiang, V. Smelyanskiy, S. Boixo & H. Neven, In preparation (2017)



Scaling Equivalence of QMC and  QA (Stoquastic)

The saddle point of the QMC Hamiltonian is an instanton in the 

order parameter space

S. Isakov, G. Mazzola,  V. Smelyanskiy,  Z. Jiang,  S. Boixo, H. Neven, M. Troyer, 

“Understanding Quantum Tunneling through Quantum Monte Carlo  Simulations”, Phys.  

Rev. Lett.  117,  180402, (2016)

Z. Jiang,  V. Smelyanskiy,  S. Isakov, S. Boixo, G. Mazzola,  M. Troyer,  H. Neven, 

“Scaling Analysis  and  Instantons for Thermally-assisted Tunneling and  Quantum 

Monte Carlo  Simulations”, Phys. Rev. A 95, 012322 (2017)
18

The exponential scaling of the escape rate in QMC at a given temperature is 

equal to the tunneling rate in QA 



Open-Boundary QMC: A Better Classical Solver? 

Numerical results suggested that open-boundary QMC is 
quadratically faster than conventional QMC at an effective zero 
temperature regime. 

Conjecture: instanton in open-boundary QMC is a half of that in 

conventional QMC

Recent analytical result: Actual situation is more complicated, though 

the conjecture remains useful in interpreting certain numerical results

19

Open-boundary QMC is immune to the kind of topological 

obstructions that DWave considered in, for example 
Andriyash and Amin, “Can quantum Monte Carlo simulate quantum 

annealing?” arXiv:1703.09277

Z. Jiang, V.N. Smelyanskiy, S. Boixo, H. Neven, Path-integral quantum Monte Carlo 

simulation with open-boundary conditions, PRA 96, 042330 (2017)



Current NASA Research in Annealing Applications
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Machine Learning

Graph-based Fault Detection

Complex Planning and Scheduling
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• General Planning Problems (e.g., navigation, 

scheduling, asset allocation) can be solved on a 

quantum annealer (such as D-Wave)

• Developed a quantum solver for Job Shop 

Scheduling that pre-characterizes instance 

ensembles to design optimal embedding and run 

strategy – tested at small scale (6x6) but 

potentially could solve intractable problems 

(15x15) with 10x more qubits

• Analyzed simple graphs of Electrical Power 

Networks to find the most probable cause of 

multiple faults – easy and scalable QUBO 

mapping, but good parameter setting (e.g., 

gauge selection) key to finding optimal solution –

now exploring digital circuit Fault Diagnostics 

and V&V

• Boltzmann sampling commonly used in 

Machine Learning, particularly Deep Learning. 

Quantum computing has provable advantage for 

some sampling problems. Demonstrated learning 

when using a QA as a Boltzmann sampler.

01 0 11 1 10 01 0 0 01 0 0

Circuit

Breakers

Sensors

Observations

IN: 

configs.

OUT: 

params.
QA {J , h}



D-Wave run results: established baseline 

performance for QA on these applications

Scheduling Applications

Job-Shop scheduling: Complete quantum-

classical solver framework with pre-

processing, compilation/run strategies, 

decomposition methods

D. Venturelli, D. J.J. Marchand, G. Rojo, Quantum Annealing 

Implementation of Job Shop Scheduling, arXiv:1506.08479

Eleanor G. Rieffel, Davide Venturelli, Minh Do, Itay Hen, Jeremy Frank, Parametrized

Families of Hard Planning Problems from Phase Transitions, AAAI-14.

E. G. Rieffel, D. Venturelli, B. O'Gorman, M. B. Do, E. Prystay, V.N. 

Smelyanskiy, A case study in programming a quantum annealer for hard 

operational planning problems, Q. Information Processing, 14, (2014) 

Comparison with 

state-of-the-art 

application-specific 

algorithms:

current best planners 

Scheduling problems as testbed for resource-

bounded tailored embedding methods
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Planner Comparison: All Scheduling Problems

FF:a=1.11 ± 0.061

LPG: a=0.69 ± 0.139

M: a=0.1 ± 0.007
Mp: a=0.54 ± 0.035

Solved problems with 6 machines and 6 jobs: 

analyzed scaling of tractability

Graph coloring

Mars Lander activity 

scheduling

Airport 
runway
scheduling

• T. Tran, M. Do, E. Rieffel, J. Frank, Z. Wang, B. O'Gorman, D. Venturelli, J. Beck, A 

Hybrid Quantum-Classical Approach to Solving Scheduling Problems, SOCS’16

• T. Tran, Z. Wang, M. Do, E. Rieffel, J. Frank, B. O'Gorman, D. Venturelli, J. Beck, 

Explorations of Quantum-Classical Approaches to Scheduling a Mars Lander 

Activity Problem, Workshops AAAI’16

QA-guided tree search



A. Perdomo-Ortiz et al., On the readiness of quantum optimization 

machines for industrial applications arXiv:1708.09780

Fault Diagnosis
First comprehensive study addressing the readiness of 

quantum annealing for real-worls applications

Six different algorithms 

(SA, PT-ICM, QMC, SAFARI, SAT-based, and DWave2X)

In all three problem Hamiltonian representations 

(PUBO, QUBO, Chimera)

Addressed future quantum annealer design for quantum 

advantage in applications with practical relevance 

• What is the impact of higher-order terms? 

• Need for non-stoquastic Hamiltonians? 

• Impact of connectivity? …



A near-term approach for quantum-enhanced machine learning 

Our approach: Hybrid approaches for generative
modeling in unsupervised machine learning.

Computationally 

bottleneck

Widely used in 

unsupervised 

learning

Visible units, v

Hidden units, u

RBM

Ex.: Restricted Boltzmann 
Machines (RBM)

Where,

Perdomo-Ortiz, et al. Opportunities and 
Challenges in Quantum-Assisted Machine 
Learning in Near-term Quantum 
Computer. arXiv:1708.09757. (2017). 
Invited article to special QST issue.

Benedetti, et al. Quantum-assisted 
learning of hardware-embedded 
probabilistic graphical models. 
arXiv:1609.02542 (2016). PRX (accepted).

Benedetti, et al. Estimation of effective 
temperatures in quantum annealers for 
sampling applications: A case study with 
possible applications in deep learning. 
PRA 94, 022308 (2016).

Benedetti, et al. Quantum-assisted 
Helmholtz machines: A quantum-classical 
deep learning framework for industrial 
datasets in near-term devices. 
arXiv:1708.09784 (2017).

Challenges solved:
Lesson: Cope with hardware 
constraints



Assure the availability of the UAS Traffic Management (UTM) 

network against communication disruptions

Kopardekar, P., Rios, J., et. al., Unmanned Aircraft System 

Traffic Management (UTM) Concept of Operations, DASC 

2016

Future 
• Higher vehicle density

• Heterogeneous air vehicles

• Mixed equipage

• Greater autonomy

• More vulnerability to 

communications disruptions

Newly funded effort in aeronautics

Apply quantum technologies to
• Robust network design

• Track and locate of a moving jammer 

• Secure communication of codes 

supporting anti-jamming protocols
30 month effort: harness the power of quantum 

computing and communication to address the 

cybersecurity challenge of availabilityJoint with NASA Glenn, who are working 

on QKD for spread spectrum codes



THANK YOU FOR YOUR ATTENTION

https://usracareers.silkroad.com/

Tracking Code: 629-640

Opportunities at NASA Quantum AI Lab. (NASA QuAIL) 

internships, early career, research scientist 

For details, please contact:

Eleanor Rieffel: NASA QuAIL Lead,

eleanor.rieffel@nasa.gov

NASA Ames Research Center

We are hiring!
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2017

M Benedetti, J Realpe-Gómez, A Perdomo-Ortiz, Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for 

industrial datasets in near-term devices, arXiv preprint arXiv:1708.09784, 2017

R Biswas, Z Jiang, K Kechezhi, S Knysh, S Mandrà, B O’Gorman, A Perdomo-Ortiz, A Petukhov, J Realpe-Gómez, E Rieffel, D Venturelli, F 

Vasko, Z Wang, A NASA perspective on quantum computing: Opportunities and challenges, Parallel Computing 64, 81-98, 2017

S Hadfield, Z Wang, B O'Gorman, EG Rieffel, D Venturelli, R Biswas, From the Quantum Approximate Optimization Algorithm to a Quantum 

Alternating Operator Ansatz, arXiv preprint arXiv:1709.03489, 2017

Z Jiang, EG Rieffel, Z Wang, Near-optimal quantum circuit for Grover's unstructured search using a transverse field, Physical Review A 95 

(6), 062317, 2017

Z Jiang, EG Rieffel, Non-commuting two-local Hamiltonians for quantum error suppression, Quantum Information Processing 16 (4), 89, 2017

Z Jiang, EG Rieffel, Z Wang, A QAOA-inspired circuit for Grover's unstructured search using a transverse field, arXiv preprint 

arXiv:1702.02577, 2017

Z Jiang, VN Smelyanskiy, S Boixo, H Neven, Path-Integral Quantum Monte Carlo with Open-Boundary Conditions, arXiv preprint 

arXiv:1708.07117, 2017

Z Jiang, VN Smelyanskiy, SV Isakov, S Boixo, G Mazzola, M Troyer, H Neven, Scaling analysis and instantons for thermally-assisted 

tunneling and quantum Monte Carlo simulations, Phys. Rev. A 95, 012322, 2017

C Neill, P Roushan, K Kechedzhi, S Boixo, SV Isakov, V Smelyanskiy, R. Barends, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. 

Fowler, B. Foxen, R. Graff, E. Jeffrey, J. Kelly, E. Lucero, A. Megrant, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. 

Wenner, T. C. White, H. Neven, J. M. Martinis, A blueprint for demonstrating quantum supremacy with superconducting qubits, arXiv

preprint arXiv:1709.06678, 2017

A Perdomo-Ortiz, A Feldman, A Ozaeta, S V Isakov, Z Zhu, B O’Gorman, H G Katzgraber, A Diedrich, H Neven, J De Kleer, B Lackey, R 

Biswas. On the readiness of quantum optimization machines for industrial applications, arXiv preprint arXiv:1708.09780, 2017

A Perdomo-Ortiz, M Benedetti, J Realpe-Gómez, R Biswas, Opportunities and challenges for quantum-assisted machine learning in near-

term quantum computers, arXiv preprint arXiv:1708.09757, 2017

Selected NASA QuAIL recent pubs and e-prints (1/3)



S Mandrà, HG Katzgraber, C Thomas, The pitfalls of planar spin-glass benchmarks: Raising the bar for quantum annealers (again), Quantum 

Science and Technology 2 (3), 2017

S Mandrà, Z Zhu, HG Katzgraber, Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field 

Driving Hamiltonians, Physical Review Letters 118 (070502), 2017

J Marshall, EG Rieffel, I Hen, Thermalization, freeze-out and noise: deciphering experimental quantum annealers, arXiv preprint 

arXiv:1703.03902, 2017

VN Smelyanskiy, D Venturelli, A Perdomo-Ortiz, S Knysh, MI Dykman, Quantum annealing via environment-mediated quantum diffusion, 

Physical Review Letters 118 (6), 066802, 2017

D Venturelli, M Do, E Rieffel, J Frank, Compiling Quantum Circuits to Realistic Hardware Architectures using Temporal Planners, arXiv

preprint arXiv:1705.08927, 2017

W Wang, S Mandrà, HG Katzgraber, Patch planting spin-glass solution for benchmarking, arXiv preprint arXiv:1706.02825, 2017

Z Wang, B O'Gorman, T. T. Tran, E. G. Rieffel, J. Frank, M. Do,, An Investigation of Phase Transitions in SMS Problems, ICAPS17

Z Wang, S Hadfield, Z Jiang, EG Rieffel, The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View, arXiv preprint 

arXiv:1706.02998, 2017

2016:

M Benedetti, J Realpe-Gómez, R Biswas, A Perdomo-Ortiz, Estimation of effective temperatures in quantum annealers for sampling 

applications: A case study with possible applications in deep learning, Physical Review A 94 (2), 022308, 2016

M Benedetti, J Realpe-Gómez, R Biswas, A Perdomo-Ortiz, Quantum-assisted learning of graphical models with arbitrary pairwise 

connectivity, arXiv preprint arXiv:1609.02542, 2016

S Boixo, SV Isakov, VN Smelyanskiy, R Babbush, N Ding, Z Jiang, J M Martinis, H Neven, Characterizing quantum supremacy in near-term 

devices, arXiv preprint arXiv:1608.00263, 2016

SV Isakov, G Mazzola, VN Smelyanskiy, Z Jiang, S Boixo, H Neven, M Troyer, Understanding Quantum Tunneling through Quantum Monte 

Carlo Simulations, Phys. Rev. Lett 117, 180402, 2016

Selected NASA QuAIL recent pubs and e-prints (2/3)



K Kechedzhi, VN Smelyanskiy, Open-system quantum annealing in mean-field models with exponential degeneracy, Physical Review X 6 (2), 

021028, 2016

S Knysh. Zero-temperature quantum annealing bottlenecks in the spin-glass phase. Nature Communications 7,12370 (2016)

S Mandrà, Z Zhu, W Wang, A Perdomo-Ortiz, HG Katzgraber, Strengths and weaknesses of weak-strong cluster problems: A detailed 

overview of state-of-the-art classical heuristics versus quantum approaches, Physical Review A 94 (2), 022337, 2016

Bryan O’Gorman, R Babbush, A Perdomo-Ortiz, Alán Aspuru-Guzik, Vadim Smelyanskiy, Bayesian network structure learning using quantum 

annealing, The European Physical Journal Special Topics 224 (1), 163-188, 2015

B O’Gorman, EG Rieffel, M Do, D Venturelli, J Frank, Comparing planning problem compilation approaches for quantum annealing, The 

Knowledge Engineering Review 31 (5), 465-474, 2016

A Perdomo-Ortiz, B O’Gorman, J Fluegemann, R Biswas, VN Smelyanskiy, Determination and correction of persistent biases in quantum 

annealers, Scientific reports 6, 2016

D Venturelli, DJJ Marchand, G Rojo, Quantum annealing implementation of Job Shop Scheduling, arXiv:1506.08479 and Constraint 

Satisfaction techniques for planning and Scheduling (COPLAS 2016)

Tony T Tran, Zhihui Wang, Minh Do, Eleanor G Rieffel, Jeremy Frank, Bryan O'Gorman, Davide Venturelli, J Christopher Beck, Explorations 

of Quantum-Classical Approaches to Scheduling a Mars Lander Activity Problem., AAAI Workshop: Planning for Hybrid Systems, 2016

Tony T Tran, Minh Do, Eleanor G Rieffel, Jeremy Frank, Zhihui Wang, Bryan O'Gorman, Davide Venturelli, J Christopher Beck, A hybrid 

quantum-classical approach to solving scheduling problems, Ninth Annual Symposium on Combinatorial Search, 2016

Selected NASA QuAIL recent pubs and e-prints (3/3)


